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Abstract

The discrete autonomous LPA model of dynamical systems investigated for regular and chaotic evolutions
under different feasible conditions in the framework of nonlinear dynamics. Evolutionary phenomena discussed
through bifurcation analysis leading to chaos. As part of chaos measure, numerical calculations performed to
obtain Lyapunov characteristic exponents (LCE), Topological Entropy, correlation dimension etc. The results
obtained by numerical calculations are demonstrated through various graphics. Chaotic evolutions discussed at
critical set of parameters, which reveals very significant results. Correlation dimension, which provides dimen-
sionality of an attractor (Strange/Chaotic), obtained numerically by the use of certain statistical method.

Keywords: Autonomous LPA model, Bifurcation, Lyapunov Characteristic Exponents, Topological Entropy,
Correlation Dimension.

1 Introduction

Mathematical models expressing real phenomena are mostly nonlinear in nature. Their evolutionary dynamical
behavior often shows properties like unpredictability and chaos attracting researchers obtaining interesting results [4;
5; 24]. The model on population dynamics and ecology are frequently used models and most considerable problems
in dynamical systems. Investigators generally prefer to use difference equation while describing mathematical models
in context of biological models. Numerous articles have appeared on such models after publication of articles by R.
May [17; 18] with reasonable assumption of evolution processes of population in concerned. Such studies generate
quite interesting results.

Many nonlinear systems exhibit chaos in some parameter space but in some cases within the system because of
the interaction among different agents, complexity character also visible during evolution. Unpredictable motion is
thus a mix phenomenon of chaos and complexity. Presence of complexity is responsible of coexistence of multiple
attractors, bistability, intermittency, cascading effects, exhibit of hysteresis properties, and some more properties,
[3; 6; 9; 26]. Chaotic evolution measured by positivity of Lyapunov exponents, (LCEs), whereas its negative value
signifies the system is regular, [2; 8; 13]. Complexity measured by increase of topological entropy; more increase in
topological entropy signifies the system is more complex, [7; 14; 15; 21; 22; 27].

Evolution in insects considered metamorphosis since big changes observed during their growth and development.
Insect evolution passes through four clearly different stages: egg, larvae, pupae and adult. Class of such insects
listed as butterflies, moths, beetles, flies, bees, wasps, and ants. Changing from one stage to another an insect has
to molt its skin and each time it emerge larger and of different form until it reaches the adult stage, [10]. Some
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recent articles dedicated for studying particular LPA model for insect’s fluctuations, like flour beetle Tribolium,
with reasonable approaches draw very interesting results, [1; 11; 12; 25].

In the present work we have considered autonomous LPA model discussed in Henson et al, [25]. The objective
here to study further the chaotic behavior and presence of complexity in insect population under different conditions
and with detailed numerical approach. Bifurcation phenomena observed here by varying certain parameter while
keeping fixed value for other parameter. Numerical investigations further extended to calculate attractors, Lyapunov
exponents, topological entropies and correlation dimension of attractors. We conclude with discussion by analyzing
the results obtained through this investigation.

2 The Autonomous LPA Model

The autonomous LPA model used here defined by the set of three equations, Henson et al., [25]: Lt+1 = bAt e
(−cea At−cel Lt),

Pt+1 = (1− µl)Lt,
At+1 = Pt e

(−cpa At) + (1− µa)At,
(1)

where Lt, Pt, At denote the population variable representing, respectively, the number of Larvae, Pupae and
Adult flour beetles at discrete time t. The discrete time interval represents the time taken for a larva to mature to
pupae. Parameter b > 0 is the average number of larvae (eggs), recruited per adult per unit time in the absence
of cannibalism, 0 < µa < 1 and 0 < µl < 1 are the probabilities of deaths, except cannibalism, for an adult and
larvae respectively. The exponential factors represent probabilities of survival of individual’s cannibalism per unit
time and cel, cea, cpa all positive called cannibalism coefficients.

3 Bifurcation Analysis

Bifurcations in a system are changes occurring in the qualitative structure of the system during evolution when
a particular parameter of it varies while other parameters kept constant. One observes sudden change during
process of changing values of parameters in some specified way. Bifurcation scenario clearly displays regular and
chaotic evolution of the system, [19; 20]. Qualitative structures of different parameter space are different and so
the bifurcation diagrams.

Bifurcation diagram, of Fig. 1, obtained by varying 0 < µa < 1 and fixing values of parameters b = 6.9,
cea = 0.01, cel = 0.01, µl = 0.2, cpa = 0.005, with initial conditions L0 = 0.1, P0 = 0.1, A0 = 0.1. We observe
stable limit cycle as µa > 0.2 and then two cycles after µa = 0.22. Then bifurcation diagram shows chaos which
continues till µa = 0.45 and then onwards again regular behaviour seen at µa = 0.49.

Figure 1: Bifurcation diagram of LPA model for the parameter values b = 6.9, cea = 0.01, cel = 0.01, µl = 0.2,
cpa = 0.005, and 0 < µa < 1.

In Fig. 2, bifurcation diagrams plotted on different axes of larvae, pupae and adults with the same parameters
used in Fig. 1.

Simulation results of LPA model with initial conditions L0 = 0.1, P0 = 0.1, A0 = 0.1 and keeping b = 6.9,
cea = 0.01, cel = 0.01, cpa = 0.005, constant obtained and presented in tabular form in Table- 1.
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Figure 2: Bifurcation diagram of (a) Larvae (b) Pupae (c) Adult flour Beetles.

Table 1: Dynamical behaviour
Parameter Kept Constant Parameter varied Range of varied parameter Dynamical behaviour

µl = 0.2 µa 0- 0.2 Stable limit cycle
b, cea, cel, cpa 0 < µa < 1 0.21-0.25 Two cycle

0.26-0.45 Chaos
0.46-0.49 Stable limit cycle
0.5-1.0 Extinction

µa = 0.96 µl 0-0.5 Stable limit cycle
b, cea, cel, cpa 0 < µl < 1 0.51-0.8 Chaos

0.8-1.0 Stable limit cycle

Again for b = 6.9, cea = 0.01, cel = 0.01, µa = 0.96, cpa = 0.005 and 0 < µl < 0.5, an strange type of bifurcation
observed as shown in Fig. 3.

Figure 3: Bifurcation diagram of (a) Larvae (b) Pupae (c) Adult flour Beetles with the parameter
values b = 6.9, cea = 0.01, cel = 0.01, µa = 0.2, cpa = 0.005, and 0 < µl < 1.

4 Regular and Chaotic Attractors

In this section we have plotted the attractors for the LPA Model with different parameters to study the regular and
chaotic behavior of the system. While the regular attractor we observe a limit cycle and the pattern is very simple
to analyze, a chaotic attractor is composed of a complex pattern. In fig. 4, we have plotted the chaotic attractor
using the parameters b = 6.9, cea = 0.01, cel = 0.01, µa = 0.26, µl = 0.2 and cpa = 0.005.

Evolution of system (1) occur through the phenomena of Hopf bifurcation. This one can observe analyzing the
following figures, Fig. 5 and Fig. 6, where a stable fixed point evolve into a stable limit cycle due to change of
parameter.

For a certain set of parameter the system evolve chaotically. A chaotic time series attractor is shown below in
Fig. 5.

5 Lyapunov Characteristic Exponent

Regular and chaotic evolutions are perfectly identified by measuring Lyapunov characteristic exponents (LCEs).
Evolution, where LCE < 0, called regular and where LCE > 0, called chaotic. Actually, whenever two orbits
initiated with infinitesimal separation, the LCE provides us a standard measure of exponential divergence.
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Figure 4: Attractor of LPA model for the parameter values b = 6.9, cea = 0.01, cel = 0.01, µa = 0.26, µl = 0.2 and
cpa = 0.005.

Figure 5: Attractor of LPA model for the parameter values b = 6.9, cea = 0.01, cel = 0.01, µa = 0.96, µl = 0.2 and
cpa = 0.005.

For one dimensional system, if δ x0 denotes the initial separation and, if δ x(t) , denotes separation at time t,
then, we have

|δ x(t)| ≈ eλ t |δ x0| (2)

Here, λ called the Lyapunov exponent. Similar rule exists for higher dimensional system. For numerical
calculations of LCEs, a systematic way described in recent literature, [16; 23]. For any system which is described
by a map, is regular for λ ≤ 0 and when λ > 0, the system is chaotic. As shown in Fig. 7, we have plotted LCEs for
two cases. Figure (a) show initially chaotic evolution which changes to regular with increasing iterations. Figure
(b) is of interesting type. This plot depicts the bifurcation case shown in Fig. 3.

6 Topological Entropy

The measure of complexity is provided by the Topological entropy. More increase in topological entropy signifies
the system is more complex, [3; 6; 9; 26]. The topological entropy discussed here closely related to that of Li and
Yorke chaos and a theoretical development given in [15]. For the numerical calculations of topological entropy, we
follow the setup of the recent article [22]. More complexity of a system signifies that the system is having more
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Figure 6: For b = 6.9, cea = 0.01, cel = 0.01, µa = 0.96, µl = 0.48 and cpa = 0.005 chaotic time series is formed.

Figure 7: LCE diagrams 0f LPA model (a) left Figure, with parameter values b = 6.9, cea = 0.01, cel = 0.01,
µa = 0.4, µl = 0.2 and cpa = 0.005 and (b) right figure with parameter values b = 6.9, cea = 0.01, cel = 0.01,
µa = 0.96, µl = 0.5 and cpa = 0.005.

topological entropy. For system (1), topological entropies have been obtained for different values of µa and µl, and
shown in Fig. 8. From Topological Entropy plot, we can observe the increase in topological entropy in the zones of
complexity when the parameter value of 0.2 < µa < 0.4 and 0.8 < µl < 0.9.

One observes from these plots that the complexity exist in case (a) in 0 < µa < 0.45 and in case (b) in a very
small interval 0.855 < µl < 0.865 .

7 Calculation of Correlation Dimension

To measure the dimensionality of a system of the space occupied by a set of random points, we use a statistical
measure called correlation dimension, [13]. If for a deterministic dynamical system, we wish to detect any indication
of the existence of chaotic attractor, we check for a fractional value of this dimension. To calculate correlation
dimension we use an accepted method discussed in recent articles, [15; 16; 22; 23]. For a map f : U → U , if we
choose an orbit O(x1) = {x1, x2, x3, x4,− − −−}, the correlation dimension of this orbit O(x1) can be computed
for a given positive real number r, by forming the correlation integral, [15; 16],

C(r) = limn→∞
1

n(n− 1)

∑n
i 6=j H (r− ‖ xi − xj ‖) , (3)

where

H(x) =

{
0, x < 0,
1, x > 0,

is the unit-step function, (Heaviside function), U is an open bounded set in Rn, the number of pairs of vectors
which are closer to r when 1 ≤ i, j ≤ n and i 6= j, is indicated by the summation in the equation and the density
of pair of clearly different vectors xi and xj that are closer to r is measured by C(r). Once we calculate C(r), the
correlation dimension Dc of O(x1) which is defined as
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Figure 8: Plots of topological entropies for parameter values in (a) b = 6.9, cea = 0.01, cel = 0.01, 0 ≤ µa ≤ 1,
µl = 0.2 and cpa = 0.005 and in (b) b = 6.9, cea = 0.01, cel = 0.01, µa = 0.96, 0 ≤ µl ≤ 1 and cpa = 0.005.

Dc = limr→0
log C(r)

log r
, (4)

will be obtained, after plotting log C(r) against log r and then by fitting a straight line to this curve. From the
equation of the straight line fitted to the correlation curve, the y−intercept will provide the value of the correlation
dimension Dc.

We have calculated the correlation integrals C(r) for models (1), and demonstrated, as correlation curves,
through graphics Fig. 9 below by changing the parameter µa = 0.26, µl = 0.2 and µa = 0.96, µl = 0.65.

Figure 9: Correlation curves of LPA Model by using the parameter values (a) b = 6.9, cea = 0.01, cel = 0.01,
µa = 0.26, µl = 0.2 and cpa = 0.005 and (b) b = 6.9, cea = 0.01, cel = 0.01, µa = 0.96, µl = 0.65 and cpa = 0.005.

By using least square linear fit method, we have obtained the equations of straight lines appropriately fitting
these correlation curves. For the curve shown in Fig. 9, the equation of the straight line obtained as
(a) y = 0.628946 + 3.82901 x, and (b) y = 0.616733 + 3.60358 x.

The y−intercept of these are, respectively, (a) 0.628946 ≈ 0.63, (b) 0.616733 ≈ 0.62. Thus the correlation
dimensions are, respectively, (a) Dc

∼= 0.63, and (b) Dc
∼= 0.62.

8 Conclusion

Our objective of investigation of LPA system (1) is to study chaos and complexity behavior during its evolution.
Bifurcation diagrams shown in figures, Fig. 1 – Fig. 3, indicate some interesting evolution scenario when certain
parameter allowed varying while keeping others fixed. Plots shown in Fig. 5 and Fig. 6, indicate the system evolve
through Hopf bifurcation. LCEs plot in Fig. 7(b) reflects the case of bifurcation of Fig. 3. Complexity exists in
the system in case (a) in 0 < µa < 0.45 but very little in case (b) only in a small interval 0.855 < µl < 0.865. It has
been observed that complexity may exist even if the system is regular and also, it may or may not exist for chaotic
cases. Correlation dimensions Dc

∼= 0.63 and Dc
∼= 0.62 calculated for two different cases of parameter spaces, as
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shown in Fig. 9. For a general class of insects model studied here could be modified and significant analysis would
be incorporated in future investigations.
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