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1. Introduction

To model and solve real-world problems, we must deal with uncertainty and vagueness. These
uncertainty and vagueness may due to many sources like measurement inaccuracy, simplification
of physical models, variations of the parameters of the system, computational errors etc. In such
cases, we do not know the exact values of the model parameters, we may know only the possible
values of intervals. Interval analysis is an efficient and reliable tool that allows us to handle such
uncertainty and vagueness effectively.

Systems of linear equations play a major role in modeling and solving the real world problems.
When the model parameters are uncertain and vague, the problem may be modeled as a system
of interval linear equations. In the literature, there are methods for computing the smallest
interval vector containing the exact solution of the systems of interval linear equations.

Interval arithmetic in matrix computations was introduced by Hansen and Smith [10]. Several
authors such as Alfeld and Herzberger [1], Hansen et al [10, 11], Jaulin et al [20], Neumaier [24],
Rohn [31, 32, 33], Ganesan and Veeramani [8, 9] etc have studied Interval matrices and systems
of interval linear equations. Kolev [18] developed a method for outer interval solution of linear
parametric systems. Popova [30] also introduced a method on the solution of parametrised linear
systems. Walter Kraemer [35] investigated computing and visualizing solution sets of interval
linear systems.

Hansen and Smith [10] proposed the preconditioning method to transform the system into an
equivalent system by multiplying the given system by an approximate inverse of the midpoint
matrix of Ã. Eugeniusz Zieniuk [7] studied the effectiveness of the existing methods used to
solve interval systems of equations generated during the numerical solution of boundary value
problems. Jaroslav Horacek and Milan Hladik [14] proposed several methods for computing
enclosures of overdetermined interval linear systems. By providing numerical examples, they
claimed that their method is better than other methods regarding tightness of enclosures, com-
putation times and other special properties of methods. Milan Hladik [23] proposed a new
algorithm, called the magnitude method for solving real preconditioned interval linear equa-
tions. Szilvia Huszarszky and Lajos Gergo [34] proposed two methods to bound the solution
set of full rank interval linear system of equations based on Hansen’s preconditioning and the
concept of generalized solution of overdetermined systems of linear equations.

The main objective of this paper is to find the smallest interval vector containing all possible
solutions of the system. In this paper, we propose a new method for the solution of the system

1

GEDRAG & ORGANISATIE REVIEW - ISSN:0921-5077

VOLUME 33 : ISSUE 02 - 2020

http://lemma-tijdschriften.nl/

Page No:2451



2

of interval linear equations using the concept of preconditioning without converting into crisp
systems.

The rest of this paper is organized as follows: In Section 2, we extend the Sengupta and
Pal’s [4] method of comparison of interval numbers to the set of all generalized intervals D. We
recall the generalized interval arithmetic on the set of generalized interval numbers D proposed
by Nirmala et.al [26, 27]. In Section 3, we recall the notion of interval matrices, arithmetic
operations on interval matrices and also prove some basic theorems for the solution of interval
linear systems based on the concept of preconditioning. In Section 4, we propose a simple
algorithm for the solution of system of interval linear equations using Intlab. In Section 5,
numerical examples are provided and the results are compared with the solutions obtained by
other methods.

2. Preliminary Notes

Let IR = {ã = [a1, a2] : a1 ≤ a2 and a1, a2 ∈ R} be the set of all proper intervals and
IR = {ã = [a1, a2] : a1 > a2 and a1, a2 ∈ R} be the set of all improper intervals on the
real line R. If a1 = a2 = a, then ã = [a, a] is a real number (or a degenerate interval).
We shall use the terms ”interval” and ”interval number” interchangeably. The mid-point and

width (or half-width) of an interval number ã = [a1, a2] are defined as m(ã) =

(
a1 + a2

2

)
and w(ã) =

(
a2 − a1

2

)
. We denote the set of generalized intervals (proper and improper) by

D = IR ∪ IR = {[a1, a2] : a1, a2 ∈ R}. The set of generalized intervals D is a group with respect
to addition and multiplication operations of zero free intervals, while maintaining the inclusion
monotonicity.

The ”dual” is an important monadic operator proposed by Kaucher [16] that reverses the
end-points of the intervals and expresses an element-to-element symmetry between proper and
improper intervals in D. For ã = [a1, a2] ∈ D, its dual is defined by dual(ã) = dual[a1, a2] =
[a2, a1]. The opposite of an interval ã = [a1, a2] is opp{[a1, a2]} = [−a1,−a2] which is the additive

inverse of [a1, a2] and

[
1

a1
,
1

a2

]
is the multiplicative inverse of [a1, a2], provided 0 ̸∈ [a1, a2].

That is ã+ (−dual ã) =ã− dual(ã) = [a1, a2]− dual([a1, a2])

=[a1, a2]− [a2, a1] = [a1 − a1, a2 − a2] = [0, 0]

and ã×
(

1

dual ã

)
=[a1, a2]×

(
1

dual([a1, a2])

)
=[a1, a2]×

1

[a2, a1]
= [a1, a2]×

[
1

a1
,
1

a2

]
=

[
a1
a1

,
a2
a2

]
= [1, 1]

2.1. Comparing Interval Numbers. Let≼ be an extended order relation between the interval
numbers ã = [a1, a2], b̃ = [b1, b2] ∈ D, then for m(ã) < m(b̃), we construct a premise (ã ≼ b̃)

which implies that ã is inferior to b̃ (or b̃ is superior to ã.)
An acceptability function A≼ : D× D −→ [0,∞) is defined as:

A≼(ã, b̃) = A(ã ≼ b̃) =
(m(b̃)−m(ã))

(w(b̃) + w(ã))
,

where w(b̃) +w(ã) ̸= 0. A≼ may be interpreted as the grade of acceptability of the first interval

number ã to be inferior to the second interval number b̃.

2.2. A New Interval Arithmetic. Ganesan and Veeramani [8] proposed a new interval arith-
metic on IR. We extend this arithmetic operations to the set of generalized interval numbers D
and incorporating the concept of dual.
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For ã = [a1, a2], b̃ = [b1, b2] ∈ D and for ∗ ∈ {+,−, ·,÷}, we define

ã ∗ b̃ = [m(ã) ∗m(b̃)− k,m(ã) ∗m(b̃) + k], where

k = min
{
(m(ã) ∗m(b̃))− α, β − (m(ã) ∗m(b̃))

}
, α and β are the end points of the interval

ã⊙ b̃ under the existing interval arithmetic. In particular

(i) Addition: ã + b̃ = [a1, a2] + [b1, b2] =
[
(m(ã) +m(b̃))− k, (m(ã) +m(b̃)) + k

]
, where

k =

{
(b2 + a2)− (b1 + a1)

2

}
.

(ii) Subtraction: ã− b̃ = [a1, a2]− [b1, b2] =
[
(m(ã)−m(b̃))− k, (m(ã)−m(b̃)) + k

]
,

k =

{
(b2 + a2)− (b1 + a1)

2

}
.

Also if ã = b̃, i.e. if [a1, a2] = [b1, b2], then

ã− b̃ = ã− dual(ã) = [a1, a2]− [a2, a1] = [a1 − a1, a2 − a2] = [0, 0] .

(iii) Multiplication: ã.b̃ = ãb̃ = [a1, a2] [b1, b2] =
[
m(ã)m(b̃)− k,m(ã)m(b̃) + k

]
, where

k = min
{
(m(ã)m(b̃))− α, β − (m(ã)m(b̃))

}
, α = min(a1b1, a1b2, a2b1, a2b2)

and β = max(a1b1, a1b2, a2b1, a2b2).

(iv) Division: 1÷ ã =
1

ã
=

1

[a1, a2]
=

[
1

m(ã)
− k,

1

m(ã)
+ k

]
, where

k = min

{
1

a2

(
a2 − a1
a1 + a2

)
,
1

a1

(
a2 − a1
a1 + a2

)}
and 0 ̸∈ [a1, a2].

Also if ã = b̃ i.e. if [a1, a2] = [b1, b2], then

ã

b̃
=

ã

ã
=

ã

dual(ã)
= [a1, a2] .

1

[a2, a1]
= [a1, a2] .

[
1

a1
,
1

a2

]
=

[
a1
a1

,
a2
a2

]
= [1, 1]

From (iii), it is clear that λã =

{
[λa1, λa2], for λ ≥ 0
[λa2, λa1], for λ < 0.

3. Main Results

An interval matrix Ã is a matrix whose elements are interval numbers. An interval matrix Ã

will be written as: Ã =

 ã11 · · · ã1n
· · · · · · · · ·
ãm1 · · · ãmn

 = (ãij)1≤i≤m, 1≤j≤n, where each ãij = [aij , aij ] (or)

Ã = [A,A] for some A,A satisfying A ≤ A. We use Dm×n to denote the set of all (m×n) interval

matrices. The midpoint (center) of an interval matrix Ã is the matrix of midpoints of its interval

elements defined as m(Ã) =

 m(ã11) · · · m(ã1n)
· · · · · · · · ·

m(ãm1) · · · m(ãmn)

. The width of an interval matrix Ã

is the matrix of widths of its interval elements defined as w(Ã) =

 w(ã11) · · · w(ã1n)
· · · · · · · · ·

w(ãm1) · · · w(ãmn)


which is always nonnegative. We use O to denote the null matrix

 0 · · · 0
· · · · · · · · ·
0 · · · 0

 and Õ

to denote the null interval matrix

 0̃ · · · 0̃
· · · · · · · · ·
0̃ · · · 0̃

. Also we use I to denote the identity
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matrix

 1 · · · 0
· · · 1 · · ·
0 · · · 1

 and Ĩ to denote the identity interval matrix

 1̃ · · · 0̃
· · · 1̃ · · ·
0̃ · · · 1̃

. If

m(Ã) = m(B̃), then the interval matrices Ã and B̃ are said to be equivalent and is denoted

by Ã ≈ B̃. In particular if m(Ã) = m(B̃) and w(Ã) = w(B̃), then Ã = B̃. If m(Ã) = O,

then we say that Ã is a zero interval matrix. In particular if m(Ã) = O and w(Ã) = O, then

Ã =

 [0, 0] . . . [0, 0]
. . . . . . . . .
[0, 0] . . . [0, 0]

. Also, if m(Ã) = O and w(Ã) ̸= O, then Ã =

 0̃ · · · 0̃
· · · · · · · · ·
0̃ · · · 0̃

 ≈

Õ. If Ã ̸≈ Õ (i.e. Ã is not equivalent to Õ), then Ã is said to be a non-zero interval matrix.

If m(Ã) = I, then we say that Ã is a identity interval matrix. In particular if m(Ã) = I

and w(Ã) = O, then Ã =

 [1, 1] · · · [0, 0]
· · · [1, 1] · · ·
[0, 0] . . . [1, 1]

. Also, if m(Ã) = I and w(Ã) ̸= O, then

Ã =

 1̃ · · · 0̃
· · · 1̃ · · ·
0̃ · · · 1̃

 ≈ Ĩ .

3.1. Arithmetic Operations on Interval Matrices. We define the arithmetic operations on
interval matrices as follows.

If Ã, B̃ ∈ Dm×n, x̃ ∈ Dn and α̃ ∈ D, then
(i). α̃Ã ≈ (α̃ãij)1≤i≤m, 1≤j≤n

(ii). Ã+ B̃ ≈
(
ãij + b̃ij

)
1≤i≤m, 1≤j≤n

(iii). Ã− B̃ ≈

{ (
ãij − b̃ij

)
1≤i≤m, 1≤j≤n

, if Ã ̸≈ B̃

Ã− dual(Ã) ≈ Õ = O, if Ã ≈ B̃

(iv). ÃB̃ ≈
(

n∑
k=1

ãik b̃kj

)
1≤i≤m, 1≤j≤n

(v). Ãx̃ ≈

(
n∑

j=1
ãijx̃

)
1≤i≤m

3.2. Preconditioning. A system of interval linear equation can be written as

Ãx̃ = b̃ (1)

where Ã ∈ Dm×n be an interval matrix and b̃ ∈ Dm be an interval vector.
Preconditioning is the process of transforming a given interval linear system into a new equiv-

alent linear system. By premultiplying the system (1) with (m(Ã))−1, the system (1) is trans-
formed into a new equivalent interval linear system.

(m(Ã))−1Ã x̃ = (m(Ã))−1 b̃

⇒ C̃x̃ = d̃

in such way that it is easy to find solution. This transformation as preconditioning with the
mid point inverse and the non-singular matrix (m(Ã))−1 is the preconditioning matrix of the
transformation.
Theorem 3.2.1

Let Ãx̃ = b̃ be a system of m linear equations in n unknowns. If m(Ã) ∈ Dm×n is invertible,

then the system (m(Ã) Ã)x̃ = m(Ã) b̃ is equivalent to Ãx̃ = b̃.

Proof: Let P̃ = {x̃ = (x̃1, x̃2, · · · , x̃n) /Ãx̃ = b̃} be the set of all solution for the system Ãx̃ = b̃
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and Q̃ = {ỹ = (ỹ1, ỹ2, · · · , ỹn) /(m(Ã) Ã)ỹ = m(Ã) b̃} be the set of all solution for the system

(m(Ã) Ã)ỹ = m(Ã) b̃.

then r̃ ∈ P̃ ⇐⇒ Ãr̃ = b̃

⇐⇒ Ãr̃ = (m(Ã))−1 (m(Ã)) b̃

⇐⇒ (m(Ã) Ã)r̃ = m(Ã) b̃

⇐⇒ r̃ ∈ Q̃

So, P̃ ≈ Q̃. From this, we conclude that the system (m(Ã) Ã)x̃ = m(Ã) b̃ is equivalent to

Ãx̃ = b̃.

4. Algorithm for the solution of system of interval linear equations using
IntLab

%Solving a system of interval linear

equations by using preconditioning

A=input(’Enter the interval matrix: ’)

b=input(’Enter the vector: ’)

format long;

A;b;

n=length(A);

c=mid(A)

d=inv(c)

z=d*A

d2=d*b

%Diagonal matrix

for i=1:n

for k=1:n

if(mid(z(i,k))==0)

z(i,k)=infsup(0,0)

else

z(i,k)

end

z1(i,k)=z(i,k)

end

end

p=[z1 d2]

l=z1

for i=1:n

for k=1:n

if((l(i,k))==(l(i,i))

&& (l(i,k))/(l(i,i)))

l(i,k)=infsup(1,1);

else

l(i,k)=infsup(0,0);

end

s=l;

end

end

q=[s d2]

%Solution of given interval matrix

for i=1:n

a=inf(z1(i,i));

b=sup(z1(i,i));

c=infsup(a,b);

format long

c;

m1=(a+b)/2 ;

if(a<=0 && b>=0)

if(m1>0)

m=m1/2;

f=m1-m;

g=m1+m;

h=infsup(f,g);

m2=(f+g)/2;

k1=(1/g)*((g-f)/(g+f));

k2=(1/f)*((g-f)/(g+f));

k=min(k1,k2);

n1=(1/m2)-k ;

n2=(1/m2)+k;

n3=infsup(n1,n2) ;

%Multiplication of two

interval numbers

a=inf(n3);

b=sup(n3);

c=inf(d2(i));

d=sup(d2(i));

format long;

a;b;c;d;

m1=(a+b)/2;

m2=(c+d)/2;

I1=infsup(a,b);

I2=infsup(c,d);

m=I1*I2;

alpha=inf(m);

beta=sup(m);

k1=(m1*m2)-alpha;

k2=beta-(m1*m2);

k=min(k1,k2);

n1=(m1*m2)-k;

GEDRAG & ORGANISATIE REVIEW - ISSN:0921-5077

VOLUME 33 : ISSUE 02 - 2020

http://lemma-tijdschriften.nl/

Page No:2455



6

n2=(m1*m2)+k;

hhh=infsup(n1,n2);

infsup(hhh)

else

m3=-m1/2;

f1=m1-m3;

g1=m1+m3;

h1=infsup(f1,g1);

m4=(f1+g1)/2;

k3=(1/g1)*((g1-f1)/(g1+f1));

k4=(1/f1)*((g1-f1)/(g1+f1));

k1=min(k3,k4);

n4=(1/m4)-k1;

n5=(1/m4)+k1;

n6=infsup(n4,n5);

end

% Multiplication of two

interval numbers

a=inf(n6);

b=sup(n6);

c=inf(d2(i));

d=sup(d2(i));

format long;

a;b;c;d;

m1=(a+b)/2;

m2=(c+d)/2;

I1=infsup(a,b);

I2=infsup(c,d);

m=I1*I2;

alpha=inf(m);

beta=sup(m);

k1=(m1*m2)-alpha;

k2=beta-(m1*m2);

k=min(k1,k2);

n1=(m1*m2)-k;

n2=(m1*m2)+k;

hhh=infsup(n1,n2);

infsup(hhh)

else

k5=(1/b)*((b-a)/(a+b)) ;

k6=(1/a)*((b-a)/(a+b));

k7=min(k5,k6);

n7=(1/m1)-k7 ;

n8= (1/m1)+k7;

n9=infsup(n7,n8);

% Multiplication of two

interval numbers

a=inf(n9);

b=sup(n9);

c=inf(d2(i));

d=sup(d2(i));

format long;

a;b;c;d;

m1=(a+b)/2;

m2=(c+d)/2;

I1=infsup(a,b);

I2=infsup(c,d);

m=I1*I2;

alpha=inf(m);

beta=sup(m);

k1=(m1*m2)-alpha;

k2=beta-(m1*m2);

k=min(k1,k2);

n1=(m1*m2)-k;

n2=(m1*m2)+k;

hhh=infsup(n1,n2);

infsup(hhh)

end

end

5. Numerical examples

Example 5.1 Consider a system of interval linear equations Ãx̃ ≈ b̃ discussed by Hassan Badry
Mohamed A. and El-Owny [13], Alexandre Goldsztejn [3] and Carlos Hoelbig [5] where

Ã =

(
[0.4481568, 0.4498432] [0.4376422, 0.4393578]
[0.4376938, 0.4393062] [0.6503902, 0.6516098]

)
and b̃ =

(
[0.5646710, 0.5667290]
[0.6103170, 0.6134830]

)
Here, (m(Ã))−1 =

(
6.508909757615598 −4.384265635506051
−4.384265635506051 4.489248050951464

)
By applying the concept of preconditioning, the given system Ãx̃ ≈ b̃ becomes(

[0.99097709233703, 1.00902290766297] [−0.00825686797462, 0.00825686797462]
[−0.00731604456254, 0.00731604456254] [0.99350163347639, 1.00649836652361]

)
.

(
x̃1

x̃2

)
=

(
[0.98572014687539, 1.01299606815859]
[0.25517392336783, 0.27840970137503]

)
That is, the new equivalent system is C̃x̃ ≈ d̃. Since m(C12) = m(C21) = [0, 0], C̃x̃ ≈ d̃ becomes
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⇒
(

[0.99097709233703, 1.00902290766297] [0, 0]
[0, 0] [0.99350163347639, 1.00649836652361]

)
.

(
x̃1

x̃2

)
=

(
[0.98572014687539, 1.01299606815859]
[0.25517392336783, 0.27840970137503]

)
By applying the concept of dual division, C̃x̃ ≈ d̃ becomes

(
[1, 1] [0, 0]
[0, 0] [1, 1]

)
.

(
x̃1

x̃2

)
=


[0.98572014687539, 1.01299606815859]

[0.99097709233703, 1.00902290766297]
[0.25517392336783, 0.27840970137503]

[0.99350163347639, 1.00649836652361]


Then, the solution set is

(
[0.97690561769153, 1.02181059734245]
[0.25352641579458, 0.28005720894827]

)

Table 1. Comparison of the proposed method with other methods

Proposed Method Hassan Badry Mo-
hamed et.al [13]

Alexandre
Goldsztejn
[2]

Carlos Hoelbig et.al
[5]

[0.97690561769153,
1.02181059734245]

[0.9745537,1.0242698] [0.974,1.0246] [0.9740262,1.02468993]

[0.25352641579458,
0.28005720894827]

[0.2460811,0.2874072] [0.2458,0.2877] [0.24574949,0.28783412]

From the table(1), the proposed method yeilds better solution comparing other methods.

Example 5.2 Consider a system of interval linear equations Ãx̃ ≈ b̃ discussed by Hassan Badry
Mohamed A. and El-Owny[13] and Carlos Hoelbig[5] where

Ã =

 [3, 3] [0, 1] [0, 1]
[0, 1] [3, 3] [0, 1]
[0, 1] [0, 1] [3, 3]

 and b̃ =

 [1, 1]
[1, 1]
[1, 1]

.

Table 2. Comparison of the proposed method with other methods

Proposed Method Hassan Badry
Mohamed
et.al[13]

Carlos Hoelbig et.al[5]

[0.23809523809523, 0.26190476190477] [0.111111,0.333334] [0.04394499,0.45605500]
[0.23809523809523, 0.26190476190477] [0.111111,0.333334] [0.04394499,0.45605500]
[0.23809523809523, 0.26190476190477] [0.111111,0.333334] [0.04394499,0.45605500]

Example 5.3 Consider a system of interval linear equations Ãx̃ ≈ b̃ discussed by Hassan Badry
Mohamed A. and El-Owny[13] and Carlos Hoelbig[5] where

Ã =

 [1.6, 1.8] [0.4, 0.5] [0.2, 0.3]
[0, 0] [0.6, 0.8] [0.2, 0.3]

[0.1, 0.1] [0, 0] [1.4, 1.8]

 and b̃ =

 [1.4, 2]
[3, 3.4]
[2, 2.3]


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Table 3. Comparison of the proposed method with other methods

Proposed Method Hassan Badry Mohamed
et.al[13]

Carlos Hoelbig et.al[5]

[-0.54077606354833, -0.02239084463241] [-1.10487815, 0.33737055] [-1.08943500, 0.52626809]
[3.29375144108830, 4.87671358328266] [3.10433362, 5.30254389] [2.75007232, 5.42039269]
[1.10903572262432, 1.61366220913697] [1.09236830,1.72177701] [0.99326595, 1.72943197]

Example 5.4 Consider a system of interval linear equations Ãx̃ ≈ b̃ discussed by Hassan Badry
Mohamed A. and El-Owny[13] and Carlos Hoelbig[5] where

Ã =


[1.98, 2.02] [−1.01,−0.99] [0, 0] [0, 0] [0, 0]

[−1.01,−0.99] [2.97, 3.03] [−1.01,−0.99] [0, 0] [0, 0]
[0, 0] [−1.01,−0.99] [2.97, 3.03] [−1.01,−0.99] [0, 0]
[0, 0] [0, 0] [−1.01,−0.99] [2.97, 3.03] [−1.01,−0.99]
[0, 0] [0, 0] [0, 0] [−1.01,−0.99] [1.98, 2.02]



and b̃ =


[10, 10]
[0, 0]

[10, 10]
[0, 0]
[0, 0]


Table 4. Comparison of the proposed method with other methods

Proposed Method Hassan Badry Mo-
hamed et.al[13]

Carlos Hoelbig et.al[5]

[6.98799498297795, 7.19382319884023] [6.89898004, 7.29765392] [6.88299293,7.29882524]
[4.10640956971969, 4.25722679391668] [3.97569664,4.405301763] [3.95697257,4.40666378]
[5.36193029490616, 5.54716061418475] [5.26906122,5.656550266] [5.25126311,5.65782779]
[2.14247455811462, 2.22116180552175] [2.04981395,2.3273262467] [2.03528617,2.32835018]
[1.07507615122737, 1.10674203059081] [1.00461178,1.1871714692] [0.99390173,1.18791644]

From the above tables (1),(2),(3) and (4), the solution sets obtained by applying the proposed
algorithm are sharper (less width) than the solution sets obtained by other techniques[13, 2, 5].

6. Conclusion

We have proposed a new algorithm based on modified interval arithmetic and the duality
concept for the solution of system of interval linear equations without converting in to crisp
system of linear equations. We have applied the concept of preconditioning to transform the
given system into a new equivalent interval linear system which is easier to find the solution.
Numerical examples are provided to show the efficiency of the proposed algorithm. Also it can
be seen that this preconditioning system gives the better bounds of the solutions of the original
system.
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