Generalized Hyers-Ulam Stability of Non-Cubic Functional Equation in Random Normed Space Using Two Different Methods

G.Kokila ${ }^{\mathrm{a}^{*}}$ and S.Murthy ${ }^{\text {b }}$
${ }^{\text {a }}$ Research Scholar, Department of Mathematics, Government Arts College for Men ,Krishnagiri ,Pin Code -635001, Tamil Nadu, India.
${ }^{\text {a }}$ Department of Mathematics, Government Arts College for Men, Krishnagiri Pin Code -635001, Tamil Nadu, India.

Emil id: balachandarkokila@gmail.com, smurthy07@yahoo.co.in

Abstract:

In this paper, we present the Hyers-Ulam stability of n-dimensional quadratic functional equation

$$
\begin{aligned}
& f(3 x+9 y+27 z)+f(3 x-9 y+27 z)+f(3 x+9 y-27 z)+f(-3 x+9 y+27 z)=3[f(x)-f(-x) \\
& +27[f(z)-f(-z)]+18[f(x)+f(-x)]+162[f(y)+f(-y)]+1458[f(z)+f(-z)]
\end{aligned}
$$

and

$$
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)
$$

in Random Normed Space.
Keywords: Fixed Point, Hyers-Ulam stability, Quadratic Functional Equation, Random Normed Space.
MSC: 39B52, 32B72, 32B82.

1. Introduction

In 1950, T. Aoki[1] generalized Hyers theorem for additive mappings. In 1978, Th. M. Rassias[14] proved a further generalization of Hyers Theorem by introducing the concept of the unbounded Cauchy difference for the sum of powers of two p-norms. Rassias established some linear mappings and concern problems in [11,13,14].

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping.

During the last three decades the stability Theorem of Th. M. Rassias[14] provided a lot of influence for the development of stability theory of a large variety of functional equations. This new concept is known today with the term Hyers-Ulam-Rassias stability for functional equations. Following the innovative approach of Th. M. Rassias similar theorems where formulated and proved by a number of mathematicians. For example four years later in 1982, J. M. Rassias [9,10] proved a similar theorem for the case the unbounded Cauchy difference is the product of two p-norms. Recently, some mathematicians were investigate the quadratic functional equations in various normed space[5,8,12,15,16].

In this paper, the authors investigate the generalized Hyers-Ulam stability of a new type of n -dimensional quadratic functional equation

$$
\begin{equation*}
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)(\tag{1.2}
\end{equation*}
$$

in Random Normed Space by using direct and fixed point method.

2. Preliminaries

In this section, we recall some notations and basic definitions used in this article.

Definition 2.1 A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous triangular norm, if T satisfies the following condition:
a) T is commutative and associative;
b) T is continuous
c) $T(a, 1)=a$ for all $a \in[0,1]$
d) $T(a, b) \leq T(c, d)$ when $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Typical examples of continuous t-norms are $T_{p}(a, b)=a b, T_{m}(a, b)=\min (a, b)$ and $T_{L}(a, b)=\max (a+b-1,0)$ (The Lukasiewicz t-norm). Recall [9] that if T is at-norm and x_{n} is a given sequence of numbers in $[0,1]$, then $T_{i=1}^{n} x_{n+i}$ is defined recurrently by $T_{i=1}^{\prime} x_{i}=x_{i}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for $n \geq 2, T_{i=1}^{\infty} x_{i}$ is defined as $T_{i=1}^{\infty} x_{n+i}$. It is known that, for the Lukasiewicz t-norm, the following implication holds:

$$
\lim _{n \rightarrow \infty}\left(T_{L}\right)_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty
$$

Definition 2.2 A random normed space (briefly, RN -Space) is a triple (X, μ, T), where X is a vector space. T is a continuous t -norm and μ is a mapping from X into D^{+}satisfies the following conditions:
(RN1) $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$.
(RN2) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X$, and $\alpha \in \mathfrak{R}$ with $\alpha \neq 0$.
(RN3) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.
Definition 2.3 Let (X, μ, T) be a RN-space.

1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ if, for any $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x}(\varepsilon)>1-\lambda$ for all $n>N$.
2) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if, for any $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-\chi_{m}}(\varepsilon)>1-\lambda$ for all $n \geq m \geq N$.
3) A RN-Space (X, μ, T) is said to be complete, if every Cauchy sequence in X is convergent to a point in X .
All over this paper we use the following notation for a given mapping $Q: X \rightarrow Y$ as

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$.

3. Random Stability Results: Direct Method

In this section, the generalized Ulam-Hyers Stability of the functional equation (1.2) in RN-Space is provided. All through this section, let us consider X be a linear space (Y, μ, T) is a complete RN-Space.
Theorem 3.1 Let $j= \pm 1, Q: X \rightarrow Y$ be a mapping for which there exists a function $\eta: X^{n} \rightarrow D^{+}$with the condition

$$
\begin{gather*}
\lim _{k \rightarrow \infty} T_{i=0}^{\infty}\left(\eta_{\left.\left.\left.2^{(k+i}\right)_{\left.x_{1}, 2^{(k+i}\right)_{x_{2}, \ldots, 2}}{ }^{(k+i)_{x_{n}}}{\left(2^{2(k+i+1) j}\right.}_{t}\right)\right)=1}=\lim _{k \rightarrow \infty} \eta_{2^{k j}} x_{x_{1}, 2^{k j}} x_{x_{2}, \ldots, 2^{k j}}^{x_{n}}\right. \tag{3.1}\\
\left(2^{2 k j} t\right) \tag{3.2}
\end{gather*}
$$

such that the functional inequality with $f(0)=0$ such that

$$
\begin{equation*}
\mu_{Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq \eta_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \tag{3.3}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$. Then there exists a unique quadratic mapping $A: X \rightarrow Y$ satisfies the functional equation (1.2) and

$$
\begin{equation*}
\mu_{A(x)-g(x)}(t) \geq T_{i=0}^{\infty}\left(\eta_{2^{(i+1) j} x,-2^{(i+1) j} x, 2^{(i+1) j} x,-2^{(i+1) j} x, 2^{(i+1) j} x, 0, \ldots, 0}\left(2^{2(i+1) j} t\right)\right)(\tag{3.4}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. The mapping $A(x)$ is defined by

$$
\begin{equation*}
\mu_{A(x)}(t)=\lim _{k \rightarrow \infty} \mu_{\frac{g\left(2^{k j} x\right)}{}}^{2^{2 k j}}(t) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and all $t>0$.
Proof. Assume $j=1$. Setting $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x,-x, x,-x, x, 0, \ldots, 0)$ in (3.1), we acquire

$$
\begin{equation*}
\mu_{2(n-5) g(2 x)-8(n-5) g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}(t) \tag{3.6}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. It follows from (3.5) and (RN2), we arrive

$$
\begin{equation*}
\mu_{\frac{g(2 x)}{2^{2}}-g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(2(n-5) 2^{2} t\right) \tag{3.7}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Replacing x by $2^{k} x$ in (3.6), we catch

$$
\begin{aligned}
& \mu_{\frac{g\left(2^{k+1} x\right)}{2^{2(k+1)}}-\frac{g\left(2^{k} x\right)}{2^{2 k}}}(t) \geq \eta_{2^{k}} x_{,-2^{k} x, 2^{k} x,-2^{k} x, 2^{k} x, 0, \ldots, 0}\left(2^{2(k+1)} 2(n-5) t\right)(3 \\
& \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{2^{2(k+1)} 2(n-5)}{\alpha^{k}} t\right)
\end{aligned}
$$

for all $x \in X$ and all $t>0$. It follows from $\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)=\sum_{k=0}^{n-1} \frac{g\left(2^{k+1} x\right)}{2^{2(k+1)}}-\frac{g\left(2^{k} x\right)}{2^{2 k}}$ and (3.8) that

$$
\begin{equation*}
\mu_{\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)}\left(t \sum_{k=0}^{n-1} \frac{\alpha^{k}}{2^{2(k+1)} 2(n-5)}\right) \geq T_{k=0}^{n-1}\left(\eta_{x,-x, x,-x, x, 0, \ldots, 0}(t)\right)=\eta_{x,-x, x,-x, x, 0, \ldots, 0}(t) \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
\mu_{\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{2(n-5) 2^{2(k+1)}}}\right) \tag{3.10}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Replacing x by $2^{m} x$ in (3.10), we arrive that

$$
\begin{equation*}
\mu_{\frac{g\left(2^{n+m_{x}}\right)}{2^{2(n+m)}} \frac{g\left(2^{m_{x}}\right)}{2^{2 m}}}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{t}{\sum_{k=m}^{n+m} \frac{\alpha^{k}}{2(n-5) 2^{2(k+1)}}}\right) \tag{3.11}
\end{equation*}
$$

As

$$
\eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{t}{\sum_{k=m+m}^{n+m} \frac{\alpha^{k}}{2(n-5) 2^{2(k+1)}}}\right) \rightarrow 1 \text { as } m, n \rightarrow \infty \text {, then }\left\{\frac{g\left(2^{n} x\right)}{2^{2 n}}\right\} \text { is a }
$$

Cauchy sequence in (Y, μ, T). Since (Y, μ, T) is a complete RN-Space, this sequence converges to some point $A(x) \in Y$. Fix $x \in X$ and put $m=0$ in (3.11), we have

$$
\begin{equation*}
\mu_{\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{2(n-5) 2^{2(k+1)}}}\right) \tag{3.12}
\end{equation*}
$$

and so, for every $\delta>0$, we collect

$$
\left.\left.\begin{array}{rl}
\mu_{A(x)-g(x)}(t+\delta) & \geq T\left(\mu_{A(x)-\frac{g\left(2^{n} x\right)}{2^{2 n}}}(\delta), \mu_{g^{\prime 2}\left(2^{n} x\right)}^{2^{2 n}-g(x)}\right.
\end{array}\right)(t)\right)\left(\begin{array}{l}
\mu_{A(x)-\frac{g\left(2^{n} x\right)}{2^{2 n}}}(\delta), \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{t}{\left.\sum_{k=0}^{n-1} \frac{\alpha^{k}}{2(n-5) 2^{2(k+1)}}\right)}\right)
\end{array}\right.
$$

Taking limit as $n \rightarrow \infty$ and using (3.13), we arrive

$$
\begin{equation*}
\mu_{A(x)-g(x)}(t+\delta) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(2(n-5)\left(2^{2}-\alpha\right) t\right) \tag{3.14}
\end{equation*}
$$

Since δ was arbitrary, by taking $\delta \rightarrow 0$ in (3.14), we have

$$
\begin{equation*}
\mu_{A(x)-g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(2(n-5)\left(2^{2}-\alpha\right) t\right) \tag{3.15}
\end{equation*}
$$

Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $\left(2^{n} x_{1}, 2^{n} x_{2}, \ldots, 2^{n} x_{n}\right)$ in (3.3) respectively, we acquire

$$
\begin{equation*}
\mu_{Q\left(2^{n} x_{1}, 2^{n} x_{2}, \ldots, 2^{n} x_{n}\right)}(t) \geq \eta_{2^{n} x_{1}, 2^{n} x_{2}, \ldots, 2^{n} x_{n}}\left(2^{2 n} t\right) \tag{3.16}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and for all $t>0$. Since

We conclude that A fulfils (1.1). To prove the uniqueness of the quadratic mapping A, assume that there exists a quadratic mapping B from X to Y , which satisfies (3.15). Fix $x \in X$. Clearly, $A\left(2^{n} x\right)=2^{2 n} A(x)$ and $B\left(2^{n} x\right)=2^{2 n} B(x)$ for all $x \in X$. It follows from (3.15) that

$$
\begin{align*}
\mu_{A(x)-B(x)}(t) & =\lim _{n \rightarrow \infty} \mu_{\frac{A\left(2^{n} x\right)}{2^{2 n}}-\frac{B\left(2^{n} x\right)}{2^{2 n}}}(t) \\
\mu_{\frac{A\left(2^{n} x\right)}{2^{2 n}}-\frac{B\left(2^{n} x\right)}{2^{2 n}}}(t) & \geq \min \left\{\mu_{\left.\frac{A\left(2^{n} x\right)}{2^{2 n}}-\frac{g\left(2^{n} x\right)}{2^{2 n}}\left(\frac{t}{2}\right), \mu_{\frac{B\left(2^{n} x\right)}{2^{2 n}}-\frac{g\left(2^{n} x\right)}{2^{2 n}}\left(\frac{t}{2}\right)}\right)}\right. \\
& \geq \eta_{2^{n}} x_{x,-2^{2} x, 2^{n} x,-2^{n} x, 2^{2} x, 0, \ldots, 0}\left(2^{\left.2 n_{2}(n-5)\left(2^{2}-\alpha\right) t\right)}\right. \\
& \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{2^{2 n_{2}(n-5)\left(2^{2}-\alpha\right) t}}{\alpha^{n}}\right) \tag{3.17}
\end{align*}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(\frac{2^{2 n} 2(n-5)\left(2^{2}-\alpha\right) t}{\alpha^{n}}\right)=\infty
$$

$\lim _{n \rightarrow \infty} \eta_{x,-x, x,-x, x, 0, \ldots, 0}\left(\frac{2^{2 n} 2(n-5)\left(2^{2}-\alpha\right) t}{\alpha^{n}}\right)=1$. Therefore, it follows that $\mu_{A(x)-B(x)}(t)=1$ for all $t>0$ and so $A(x)=B(x)$. This completes the proof.

The following corollary is an immediate consequence of Theorem 3.1, concerning the stability of (1.2).
Corollary 3.2. Let ε and s be non-negative real numbers. Let a quadratic function $Q: X \rightarrow Y$ satisfies the inequality

$$
\mu_{Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq\left\{\begin{array}{l}
\eta_{\varepsilon}(t) \tag{3.18}\\
\eta_{\varepsilon \sum_{i=1}^{n} \|\left. x_{i}\right|^{s}}(t) ; \quad s \neq 2 \\
\eta \varepsilon\left(\left.\prod_{i=1}^{n}\left\|\left.x_{i}\right|^{s}+\sum_{i=1}^{n}\right\| x_{i}\right|^{n s}\right)^{(t) ; \quad s \neq \frac{2}{n}}
\end{array}\right.
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$. The there exists a unique quadratic function $A: X \rightarrow Y$ such that

$$
\mu_{g(x)-A(x)}(t) \geq\left\{\begin{array}{l}
\eta \frac{\varepsilon}{|6|(n-5)}(t) \tag{3.19}\\
\eta \frac{\left.\varepsilon|x|\right|^{s}}{\left.2(n-5)\right|^{2}-2^{s} \mid} \\
\eta \frac{\varepsilon \mid x \|^{n s}}{\left.2(n-5)\right|^{2}-2^{n s} \mid}
\end{array}\right.
$$

for all $x \in X$ and all $t>0$.

4. Random Stability Results: Fixed Point Method.

In this section, the authors present the generalized Ulam-Hyers Stability of the functional equation (1.2), in Random Normed Space using fixed point method.
Theorem 4.1 Let $Q: X \rightarrow Y$ be a mapping for which there exists a function $\eta: X^{n} \rightarrow D^{+}$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \eta_{\delta_{i}^{k} x_{1}, \delta_{i}^{k} x_{2}, \ldots, \delta_{i}^{k} x_{n}}\left(\delta_{i}^{2 k} t\right)=1 \tag{4.1}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$ and where $\delta_{i}=\left\{\begin{array}{cc}2, & i=0 ; \\ \frac{1}{2} & i=1 ;\end{array}\right.$ satisfying the functional inequality

$$
\begin{equation*}
\mu_{Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq \eta_{x_{1}, x_{2}, \ldots, x_{n}}(t) \tag{4.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$. If there exists $L=L(i)$ such that the function

$$
\left.x \rightarrow \beta(x, t)=\eta_{\frac{x}{2}},-\frac{x}{2}, \frac{x}{2},-\frac{x}{2}, \frac{x}{2}, 0, \ldots, 0\right)(2(n-5) t),
$$

has the property, that

$$
\begin{equation*}
\beta(x, t) \leq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right) \tag{4.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Then there exists a unique quadratic function $A: X \rightarrow Y$ satisfying the functional equation (1.2) and

$$
\begin{equation*}
\mu_{A(x)-g(x)}\left(\frac{L^{1-i}}{1-L} t\right) \geq \beta(x, t) \tag{4.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let d be a general metric on Ω, such that $d(a, b)=\inf \left\{k \in(0, \infty) / \mu_{(a(x)-b(x))}(k t) \geq \beta(x, t), x \in X, t>0\right\}$. It is easy to see that
(Ω, d) is complete. Define $T: \Omega \rightarrow \Omega$ by $T a(x)=\frac{1}{\delta_{i}^{2}} a\left(\delta_{i} x\right)$, for all $x \in X$. Now for $a, b \in \Omega$, we have $d(a, b) \leq K$.

$$
\begin{align*}
& \Rightarrow \mu_{(a(x)-b(x))}(K t) \geq \beta(x, t) \\
& \Rightarrow \mu_{(\operatorname{Ta(x)}-\operatorname{Tb}(x))}\left(\frac{K t}{\delta_{i}^{2}}\right) \geq \beta(x, t) \\
& \Rightarrow d(\operatorname{Ta}(x), T b(x)) \leq K L \\
& \Rightarrow d(T a, T b) \leq L d(a, b) \tag{4.5}
\end{align*}
$$

for all $a, b \in \Omega$. Therefore T is strictly contractive mapping on Ω with Lipschitz constant L . It follows from (3.6) that

$$
\begin{equation*}
\mu_{2(n-5) g(2 x)-8(n-5) g_{(x)}}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}(t) \tag{4.6}
\end{equation*}
$$

for all $x \in X$. It follows from (4.6) that

$$
\begin{equation*}
\mu_{\frac{g(2 x)}{2^{2}}-g(x)}(t) \geq \eta_{x,-x, x,-x, x, 0, \ldots, 0}(8(n-5) t) \tag{4.7}
\end{equation*}
$$

for all $x \in X$. Using (4.3) for the case $i=0$, it reduce to

$$
\mu_{\frac{g(2 x)}{2^{2}}-g(x)}(t) \geq L \beta(x, t)
$$

for all $x \in X$. Hence, we obtain

$$
\begin{equation*}
d\left(\mu_{T g(x)-g(x)}\right) \geq L=L^{1-i}<\infty \tag{4.8}
\end{equation*}
$$

for all $x \in X$. Replacing x by $\frac{x}{2}$ in (4.7), we get

$$
\begin{equation*}
\mu_{\frac{g(x)}{2^{2}}-g\left(\frac{x}{2}\right)}(t) \geq \eta_{\frac{x}{2},-\frac{x}{2}, \frac{x}{2},-\frac{x}{2}, \frac{x}{2}, 0, \ldots, 0}(8(n-5) t) \tag{4.9}
\end{equation*}
$$

for all $x \in X$. Using (4.3) for the case $i=1$, it reduce to

$$
\mu_{2^{2} g\left(\frac{x}{2}\right)-g(x)}(t) \geq \beta(x, t) \Rightarrow \mu_{T g(x)-g(x)}(t) \geq \beta(x, t)
$$

for all $x \in X$. Hence, we get

$$
\begin{equation*}
d\left(\mu_{T g(x)-g(x)}\right) \geq L=L^{1-i}<\infty \tag{4.10}
\end{equation*}
$$

for all $x \in X$. From (4.8) and (4.10), we can conclude

$$
\begin{equation*}
d\left(\mu_{T g(x)-g(x)}\right) \geq L=L^{1-i}<\infty \tag{4.11}
\end{equation*}
$$

for all $x \in X$. In order to prove $A: X \rightarrow Y$ satisfies the functional equation (1.2), the remaining proof is similar by using Theorem 3.1. Since A is unique fixed point of T in the set $\Delta=\{g \in \Omega / d(g, A)<\infty\}$.Finally, A is an unique function such that

$$
\mu_{g(x)-A(x)}\left(\frac{L^{1-i}}{1-L} t\right) \geq \beta(x, t)
$$

for all $x \in X$ and $t>0$. This completes the proof of the Theorem.
From the Theorem 4.1, we obtain the following Corollary concerning the stability for the functional equation (1.2).
Corollary 4.2. Suppose that a function $Q: X \rightarrow Y$ satisfies the inequality

$$
\mu_{Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq\left\{\begin{array}{l}
\eta_{\varepsilon}(t) \tag{4.12}\\
\eta_{\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}}(t) ; \quad s \neq 2 \\
\left.\eta{ }_{\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right.}\right)^{(t) ; \quad s \neq \frac{2}{n}}
\end{array}\right.
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$, where ε, s are constants with $\varepsilon>0$, then there exists a unique quadratic mapping $A: X \rightarrow Y$ such that

$$
\mu_{g(x)-A(x)}(t) \geq\left\{\begin{array}{l}
\eta \frac{\varepsilon}{(n-5)|6|}(t) \tag{4.13}\\
\frac{\eta \|\left. x\right|^{s}}{\left.2(n-5)\right|^{2}-2^{s} \mid} \\
\eta \frac{\varepsilon|x| \|^{n s}}{\left.2(n-5)\right|^{2}-2^{n s} \mid}
\end{array}(t)\right.
$$

for all $x \in X$ and all $t>0$.
Proof. Setting

$$
\mu_{Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq\left\{\begin{array}{l}
\eta_{\varepsilon}(t) \\
\left.\eta_{\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}(t)^{\prime}}^{\eta} \begin{array}{l}
\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right.
\end{array}\right)^{(t)},
\end{array}\right.
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$.Then

$$
\begin{aligned}
& \eta_{\left(\delta_{i}^{k} x_{1}, \delta_{i}^{k} x_{2}, \ldots, \delta_{i}^{k} x_{n}\right)}\left(\delta_{i}^{2 k} t\right)=\left\{\begin{array}{l}
\left.\eta_{\varepsilon \delta_{i}^{2 k}}^{\eta} \begin{array}{l}
\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s} \delta_{i}^{(2-s) k} \\
\eta \\
\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s} \delta_{i}^{2-s) k}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s} \delta_{i}^{(2-n s) k}\right.
\end{array}\right)^{(t)} \\
\end{array}\right. \\
&=\left\{\begin{array}{lll}
\rightarrow 1 & \text { as } & k \rightarrow \infty \\
\rightarrow 1 & \text { as } & k \rightarrow \infty \\
\rightarrow 1 & \text { as } & k \rightarrow \infty
\end{array}\right.
\end{aligned}
$$

But we have $\beta(x, t)=\eta_{\frac{x}{2},-\frac{x}{2}, \frac{x}{2},-\frac{x}{2}, \frac{x}{2}, 0, \ldots, 0}(2(n-5) t)$ has the property $L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)$ for all $x \in X$ and $t>0$. Now

$$
\begin{aligned}
& \beta(x, t)=\left\{\begin{array}{l}
\eta \frac{\varepsilon}{2(n-5)}(t) \\
\eta_{\frac{\varepsilon\|x\|^{s}}{2(n-5)^{s}}}(t) \\
\eta_{\frac{\varepsilon\|x\|^{n s}}{2(n-5) 2^{n s}}}(t)
\end{array}\right. \\
& L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)=\left\{\begin{array}{l}
\eta_{\delta_{i}^{-2} \beta(x)}(t) \\
\eta_{\delta_{i}^{s-2} \beta(x)}(t) \\
\eta_{\delta_{i}^{n s-2} \beta(x)}(t)
\end{array}\right.
\end{aligned}
$$

By using Theorem 4.1, we prove the following six cases:
$L=2^{-2}$ if $i=0$ and $L=2^{2}$ if $i=1$
$L=2^{s-2}$ for $s<2$ if $i=0$ and $L=2^{2-s}$ for $s>2$ if $i=1$
$L=2^{n s-2}$ for $s<\frac{2}{n}$ if $i=0$ and $L=2^{2-n s}$ for $s>\frac{2}{n}$ if $i=1$
Case 1: $L=2^{-2}$ if $i=0$

$$
\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta_{\left(\frac{\varepsilon}{6_{(n-5)}}\right)}(t)
$$

Case.2: $L=2^{2}$ if $i=1$

$$
\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta_{\left(\frac{\varepsilon}{-6(n-5)}\right)}(t)
$$

Case.3: $L=2^{s-2}$ for $s<2$ if $i=0$

$$
\left.\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta_{\left(\frac{\varepsilon\|x\|^{s}}{2(n-5)\left(2^{2}-2^{s}\right)}\right.}\right)
$$

Case.4: $L=2^{2-s}$ for $s>2$ if $i=1$

$$
\begin{equation*}
\left.\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta_{\left(\frac{\varepsilon\|x\|^{s}}{2(n-5)\left(2^{s}-2^{2}\right)}\right.}\right)(t) \tag{t}
\end{equation*}
$$

Case.5: $L=2^{n s-2}$ for $s<\frac{2}{n}$ if $i=0$

$$
\left.\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta_{\left(\frac{\varepsilon\|x\|^{n s}}{2(n-5)\left(2^{2}-2^{n s}\right)}\right)}\right)^{(t)}
$$

Case.6: $L=2^{2-n s}$ for $s>\frac{2}{n}$ if $i=1$

$$
\left.\mu_{g(x)-A(x)}(t) \geq L \frac{1}{\delta_{i}^{2}} \beta\left(\delta_{i} x, t\right)(t) \geq \eta^{\left(\frac{\varepsilon\|x\|^{n s}}{2(n-5)\left(2^{\left.n s-2^{2}\right)}\right.}\right)}\right)^{(t)}
$$

Hence the proof is complete.

References

[1] T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan, Vol. 2, (1950), 64-66.
[2] P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl., Vol. 184, (1994), 431-436.
[3] Govindan, S.Murthy and M.Saravanan, Solution and stability of New type of
 different methods, Int. J. Math. And Its Appl., Vol. 5(1-B), (2017), 187-211.
[4] V.Govindan, S.Murthy, G.Kokila, Fixed point and stability of icosic functional equation in quasi beta normed spaces, Malaya J. of Mathematik, Vol. 6(1), (2018),261-275.
[5] Pl. Kannappan, Quadratic functional equation inner product spaces, results Math. Vol. 27(3-4), (1995), 368-372.
[6] S. Murthy, V. Govindhan and M. Sree Shanmuga Velan, Solution and Stability of Two Types of n-Dimensional Quartic Functional Equation in Generalized 2-Normed Spaces, Int. J. Pure and Appl. Math., Vol. 111(2), (2016), 249-272.
[7] S.Murthy, V.Govindhan and M.SreeShanmugaVelan, Generalized U - H Stability of New n - type of Additive Quartic Functional Equation in Non - Archimedean, Int. J. Math. And Its Appl., Vol. 5(2-A), (2017), 1-11.
[8] C. Park, On the stability of the quadratic mappings in Banach Modules, J. Math. Anal. Appl., Vol. 226, (2002), 135-144.
[9] J. M. Rassias, On Approximately Linear Mappings, J. Funct. Anal., USA, Vol. 46, (1982), 126-130.
[10] J. M. Rassias, On Approximately of Approximately Linear Mappings by Linear Mappings, Bull. Sc. Mat., Vol. 108, (1984), 445-446.
[11] J. M. Rassias, Solution of the Ulam Problem for Cubic Mapping, An. Univ. Timic. Soaraser. Math-In form., Vol. 38(1), (2000), 121-132.
[12] J. M. Rassias and M. J. Rassias, On the Ulam problem for Euler quadratic mappings, Novi Sad J. Math., Vol. 35(2), (2005), 57-66.
[13] J. M. Rassias, Reza Saadati, Ghadir Sadeghi and J. Vahidi, On Nonlinear Stability in Various Random Normed Spaces, J. Inequ. Appl., doi:10.1186/1029-242X-2011-62, (2011).
[14] Th. M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Amer. Math. Soc., Vol. 72, (1978), 297-300.
[15] K. Ravi, J.M. Rassias, Sandra Pinelas and R. Jamuna, A Fixed Point Approach to the Stability of a Quadratic Quartic Functional Equation in Paranormed Spaces, PanAmerican Mathematical Journal, Vol. 24(2), (2014), 61-84.
[16] Sandra Pinelas, V. Govindan and K. Tamilvanan, Stability of Non-Additive Functional Equation, IOSR Journal of Mathematics, 14(2), (2018), 70-78.

