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Abstract: 

In this paper, we prove the Hyers-Ulam stability of the orthogonally n-dimensional quadratic 

functional equation of the form 

and  
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where n  is a positive integer with 3n  . 
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1.Introduction 

 In 1982, J. M. Rassias[13] followed the innovative approach of the Th. M. Rassias 

theorem in which he replaced the factor 
p p

x y  by 
p p

x y  for ,p q R  with p + q=1. A 

generalization of all the above results was obtained by P. Gavruta[5]  in 1994 by replacing 

the unbounded Cauchy difference by a general sontrol function  ,x y  in the spirit of 

Rassias approach. 

 In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy difference 

was obtained by Ravi et al., by considering the summation of both the sum and the product of 

two p-norms in the sprit of Rassias approach. The stability problems of several functional 

equations have been extensively investigated by a number of authors and there are many 

interesting results concerning this problem ( see[1,2,3,4,6,10,12,15] . Some of the functional 

papers are used to develop this paper which are [5,7,8,9,14]. 

Definition 1.1A vector space X is called an orthogonally vector space if there is a relation 

x y  on X such that 

  0, 0i x x   for all ;x X  

 ii If x y  and , 0x y  , then  x, y are linearly independent; 

 iii x y , then ax by  for all ,a b ; 

 iv If P  is an two-dimensional subspace of X; then 

 a for every x P  there exists 0 y P   such that x y ; 

 b there exists vectors , 0x y   such that x y  and x y x y   . 
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Any vector space can be made into an orthogonally vector space if we define 0, 0x x   for 

all  x  and for non zero vector x ,  y define  x y  iff x,  y are linearly independent. The 

relation   is called symmetric if  x y  implies that y x  for all ,x y X . The pair  ,X   

is called an orthogonality space. It becomes orthogonality normed space when the 

orthogonality space equipped with a norm. 

 In this paper, we investigate n-dimensional Euler-Lagrange functional equation of the 

form 

       2
3 5 2

1 1 1, 1 1

g g g g
n n n n

x x x n x x n n x
i j i i j i

i j i i j i j n i

             

       

  
  
 

   

(1.1) 

and study the Hyers-Ulam stability in the concept of orthogonality and Ulam-Gavruta-

Rassias stability. 

A mapping :g X Y  is called orthogonal quadratic if it satisfies the quadratic functional 

equation (1.1)  for all 1 2, ,..., nx x x X  with 1 2 ... nx x x    where X be an orthogonality 

space and Y be a real banach space. 

2. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1) 

involving Sum of Powers of  Norms 

In this section, let  ,X   denotes an orthogonality normed space with norm .
X

 and 

 , .
Y

Y   is a Banach space. 

Theorem 2.1  Let   and  2s s   be non-negative real numbers. Let :g X Y  be a 

mapping fulfilling 
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 1 2 ...
s s s

nX X X
x x x     (2.1) 

for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 

   
  22 5 (2 2 )

s

X

sY

x
g x A x

n


 

 
     (2.2) 

for all x X . 

Proof.  Setting  1 2, ,..., nx x x  by  0,0,...,0  in (2.1), we have  0 0f  . Letting Replacing 

 1 2, ,..., nx x x  by  , , , , ,0,...,0x x x x x   in (2.1), we obtain 

         2 5 2 8 5
P

XY
n g x n g x x   

   
(2.3) 

for all x X . Since 0x  , we get 

 
 

 
 

2 1
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P

X
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g x
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n
 


    (2.4) 

for all x X . Now replacing 2x by x  and divided by 4 in (2.4) and summing the resulting 

inequality with (2.4), we obtain 

 
 

 

2

4 2
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X
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g x
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n

  
   

  
   (2.5) 

for all x X . Using the induction on n, we receive 
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    (2.6) 

for all x X .  In order to prove the convergence of the sequence 
 

2
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2mx by x  and divided by 22 m  in (2.6), for any , 0n m   we get 
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     (2.7) 

As 2s  , the R.H.S. of (2.7) tends to 0  as  m  for all .x X  Thus 
 

2

2
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n

n

g x  
 
  

 is a 

Cauchy sequence. Since Y is complete, there exists a mapping :A X Y  such that 

 
 

2

2
lim , .

2

n

nn

g x
A x x X


      

Taking n  in (2.6), we have at the formula (2.2) for all x X . To prove A satisfies (1.1), 

replace  1 2, ,..., nx x x  by  1 22 ,2 ,...,2n n n

nx x x  in (2.1) and divided by 22 n  then it follows that 
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Again taking limit as n  in the above inequality, we have 
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which gives 
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for all 1 2, ,..., nx x x X  with 1 2 ... nx x x   . Therefore :A X Y  is an orthogonally 

quadratic mapping which satisfies (1.1). 

To prove the uniqueness of A. Let B be another quadratic function satisfying (1.1) and the 

inequality (2.2). Then 
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  0 as n   

for all x X . Therefore A is unique. This completes the proof of the theorem. 

Theorem 2.2  Let   and  2s s   be non-negative real numbers. Let :g X Y  be a 

mapping fulfilling 
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 1 2 ...
s s s

nX X X
x x x     (2.8) 

for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 
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     (2.9) 

for all x X . 

Proof.  Replacing 
2

x
x by  in (2.3), we arrive 
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(2.10) 

for all x X . Now replacing 
2

x
x by  and multiply by 4 in (2.10),  we obtain 

 
4

2 2( 1)
4 2

2 2 2 5 2

s

s X

Y

x x
g g x

n




   
    

   
    (2.11) 

From (2.10) and (2.11), we get 
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for all x X . Using the induction on n, we receive 
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   (2.13) 

for all x X .  In order to prove the convergence of the sequence 22
2

n

n

x
g

  
  

  
 replace 

2m

x
x by  and multiply by 22 m  in (2.13), for any , 0n m   we get 

2( ) 2 2 22 2 2 2
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n m m m n
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g g g g
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   (2.14) 
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As 2s  , the R.H.S. of (2.14) tends to 0  as  m  for all .x X  Thus 22
2

n

n

x
g

  
  

  
 is a 

Cauchy sequence. Since Y is complete, there exists a mapping :A X Y  such that 

  2lim 2 , .
2

n

nn

x
A x g x X



 
   

 
   

Taking n  in (2.13), we have at the formula (2.9) for all x X . To prove the uniqueness 

of A and it satisfies the equation (1.1), the proof is similar to that of Theorem 2.1  

3. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1) 

involving Constant only. 

Theorem 3.1  Let   be non-negative real number. Let :g X Y  be a mapping fulfilling 
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    (3.1) 

for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 
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     (3.2) 

for all x X . 

Proof.  Setting  1 2, ,..., nx x x  by  0,0,...,0 in (3.1), we have  0 0f  . Replacing 

 1 2, ,..., nx x x  by  , , , , ,0,...,0x x x x x   in (3.1), we obtain 

       2 5 2 8 5
Y

n g x n g x    
    

(3.3) 

for all x X . Since 0x  , we get 
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     (3.4) 

for all x X . Now replacing 2x by x  and divided by 4 in (3.4) and summing the resulting 

inequality with (3.4), we obtain 
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    (3.5) 

for all x X . Using the induction on n, we receive 
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    (3.6) 

for all x X .  In order to prove the convergence of the sequence 
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2mx by x  and divided by 22 m  in (3.6), for any , 0n m   we get 
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      (3.7) 

As 2s  , the R.H.S. of (3.7) tends to 0  as  m  for all .x X  Thus 
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 is a 

Cauchy sequence. Since Y is complete, there exists a mapping :A X Y  such that 
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Taking n  in (3.6), we have at the formula (3.2) for all x X . To prove A satisfies (1.1), 

replace  1 2, ,..., nx x x  by  1 22 ,2 ,...,2n n n

nx x x  in (3.1) and divided by 22 n  then it follows that 
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 Again taking limit as n  in the above inequality, we have 
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which gives 
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for all 1 2, ,..., nx x x X  with 1 2 ... nx x x   . Therefore :A X Y  is an orthogonally 

quadratic mapping which satisfies (1.1). 

To prove the uniqueness of A. Let B be another quadratic function satisfying (1.1) and the 

inequality (3.2). Then 
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n n
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  0 as n   

for all x X . Therefore A is unique. This completes the proof of the theorem. 

Theorem 3.2  Let   be non-negative real numbers. Let :g X Y  be a mapping fulfilling 
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     (3.8) 

for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 
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for all x X . 

Proof.  Replacing 
2

x
x by  in (3.3), we arrive 
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for all x X . Using the induction on n, we receive 
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for all x X .  In order to prove the convergence of the sequence 22
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As 2s  , the R.H.S. of (3.14) tends to 0  as  m  for all .x X  Thus 22
2

n

n

x
g

  
  

  
 is a 

Cauchy sequence. Since Y is complete, there exists a mapping :A X Y  such that 

  2lim 2 , .
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n
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A x g x X



 
   

 
   

Taking n  in (3.13), we have at the formula (3.9) for all x X . To prove the uniqueness 

of A and it satisfies the equation (1.1), the proof is similar to that of Theorem 3.1 

4. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1) 

involving Sum of the Product of  Powers of  Norms 

Theorem 4.1  Let   and 
2

s s
n

 
 

 
 be non-negative real numbers. Let :g X Y  be a 

mapping fulfilling 
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    1 2 1 2... ...
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for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 
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for all x X . 

Proof. The proof is same as the proof of Theorem 2.1.  

Theorem 4.2  Let   and 
2

s s
n

 
 

 
 be non-negative real numbers. Let :g X Y  be a 

mapping fulfilling 

       2
3 5 2

1 1 1, 1 1
Y

g g g g
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i j i i j i

i j i i j i j n i

            

       

  
  
 

      

    

    1 2 1 2... ...
s s s ns ns ns

n nX X X X X X
x x x x x x       

for all 1 2, ,..., nx x x X with 1 2 ... nx x x   . Then there exists a unique orthogonally 

quadratic mapping :A X Y  such that 

   
  22 5 (2 2 )

ns

X

nsY

x
g x A x

n


 

 
      

for all x X . 

Proof. The proof is same as the proof of Theorem 2.2.  
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