The Stability Analysis of n-dimensional Quadratic Functional Equations

C. Muthamilaras $\mathrm{a}^{\mathrm{a}^{*}}, \mathrm{G}$. Balasubramanian ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Government Arts College for Men ,Krishnagiri Pin Code -635001, Tamil Nadu, India.
${ }^{\text {a }}$ Department of Mathematics, Government Arts College for Men, Krishnagiri Pin Code -635001, Tamil Nadu, India.

Emil id: gbs_geetha@yahoo.com, muthamil22@gmail.com

Abstract:

In this paper, we prove the Hyers-Ulam stability of the orthogonally n-dimensional quadratic functional equation of the form

$$
\begin{aligned}
& \nabla\left(r x_{1}+r^{2} x_{2}+r^{3} x_{3}\right)+\nabla\left(-r x_{1}+r^{2} x_{2}+r^{3} x_{3}\right)+\nabla\left(r x_{1}-r^{2} x_{2}+r^{3} x_{3}\right)+\nabla\left(r x_{1}+r^{2} x_{2}-r^{3} x_{3}\right)=2\left[\nabla\left(r x_{1}+r^{2} x_{2}\right)\right. \\
& \left.+\nabla\left(r^{2} x_{2}+r^{3} x_{3}\right)+\nabla\left(r x_{1}+r^{3} x_{3}\right)+\nabla\left(r x_{1}-r^{2} x_{2}\right)+\nabla\left(r^{2} x_{2}-r^{3} x_{3}\right)+\nabla\left(r x_{1}-r^{3} x_{3}\right)\right]-2\left[r^{4}\left(\nabla\left(x_{1}\right)+f\left(-x_{1}\right)\right]\right. \\
& \left.+r^{8}\left(\nabla\left(x_{2}\right)+\nabla\left(-x_{2}\right)\right)+r^{12}\left(\nabla\left(x_{3}\right)+f\left(-x_{3}\right)\right)\right]-\left[r\left(\nabla\left(x_{1}\right)-\nabla\left(-x_{1}\right)\right)+r^{2}\left(\nabla\left(x_{2}\right)-\nabla\left(-x_{2}\right)\right)+r^{3}\left(\nabla\left(x_{3}\right)-\nabla\left(-x_{3}\right)\right)\right]
\end{aligned}
$$

and

$$
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)
$$

where n is a positive integer with $n \geq 3$.
Keywords: Hyers-Ulam stability, Ulam-Gavruta-Rassias stability, Orthogonally EulerLagrange functional equation, Quadratic mapping.
AMS Subject Classification: 39B55, 39B52, 39B82, 46H25.

1.Introduction

In 1982, J. M. Rassias[13] followed the innovative approach of the Th. M. Rassias theorem in which he replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{p}$ for $p, q \in R$ with $\mathrm{p}+\mathrm{q}=1$. A generalization of all the above results was obtained by P. Gavruta[5] in 1994 by replacing the unbounded Cauchy difference by a general sontrol function $\phi(x, y)$ in the spirit of Rassias approach.

In 2008, a special case of Gavruta's theorem for the unbounded Cauchy difference was obtained by Ravi et al., by considering the summation of both the sum and the product of two p-norms in the sprit of Rassias approach. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see[1,2,3,4,6,10,12,15]. Some of the functional papers are used to develop this paper which are [5,7,8,9,14].
Definition 1.1A vector space X is called an orthogonally vector space if there is a relation $x \perp y$ on X such that
(i) $x \perp 0,0 \perp x$ for all $x \in X$;
(ii) If $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;
(iii) $x \perp y$, then $a x \perp$ by for all $a, b \in \mathbb{R}$;
(iv) If P is an two-dimensional subspace of X ; then
(a) for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;
(b) there exists vectors $x, y \neq 0$ such that $x \perp y$ and $x+y \perp x-y$.

Any vector space can be made into an orthogonally vector space if we define $x \perp 0,0 \perp x$ for all x and for non zero vector x, y define $x \perp y$ iff x, y are linearly independent. The relation \perp is called symmetric if $x \perp y$ implies that $y \perp x$ for all $x, y \in X$. The pair (X, \perp) is called an orthogonality space. It becomes orthogonality normed space when the orthogonality space equipped with a norm.

In this paper, we investigate n-dimensional Euler-Lagrange functional equation of the form

$$
\begin{equation*}
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right) \tag{1.1}
\end{equation*}
$$

and study the Hyers-Ulam stability in the concept of orthogonality and Ulam-GavrutaRassias stability.
A mapping $g: X \rightarrow Y$ is called orthogonal quadratic if it satisfies the quadratic functional equation (1.1) for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$ where X be an orthogonality space and Y be a real banach space.

2. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1) involving Sum of Powers of Norms

In this section, let (X, \perp) denotes an orthogonality normed space with norm $\|\cdot\|_{X}$ and $\left(Y,\|\cdot\|_{Y}\right)$ is a Banach space.
Theorem 2.1 Let λ and $s(s<2)$ be non-negative real numbers. Let $g: X \rightarrow Y$ be a mapping fulfilling

$$
\begin{gather*}
\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} \\
\leq \lambda\left\{\left\|x_{1}\right\|_{X}^{s}+\left\|x_{2}\right\|_{X}^{s}+\ldots+\left\|x_{n}\right\|_{X}^{s}\right\} \tag{2.1}
\end{gather*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda\|x\|_{X}^{s}}{2(n-5)\left(2^{2}-2^{s}\right)} \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Setting $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(0,0, \ldots, 0)$ in (2.1), we have $f(0)=0$. Letting Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x,-x, x,-x, x, 0, \ldots, 0)$ in (2.1), we obtain

$$
\begin{equation*}
\|2(n-5) g(2 x)-8(n-5) g(x)\|_{Y} \leq \lambda\left\{\|x\|_{X}^{P}\right\} \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Since $x \perp 0$, we get

$$
\begin{equation*}
\left\|\frac{g(2 x)}{4}-g(x)\right\|_{Y} \leq \frac{1}{8(n-5)} \lambda\left\{\|x\|_{X}^{P}\right\} \tag{2.4}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $2 x$ and divided by 4 in (2.4) and summing the resulting inequality with (2.4), we obtain

$$
\begin{equation*}
\left\|\frac{g\left(2^{2} x\right)}{2^{4}}-g(x)\right\|_{Y} \leq \frac{\lambda}{8(n-5)}\left\{1+\frac{2^{s}}{2^{2}}\right\}\|x\|_{X}^{s} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. Using the induction on n , we receive

$$
\begin{equation*}
\left\|\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)\right\|_{Y} \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{n-1} \frac{2^{s k}}{2^{2 k}}\|x\|_{X}^{s} \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{2^{s k}}{2^{2 k}}\|x\|_{X}^{s} \tag{2.6}
\end{equation*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{\frac{g\left(2^{n} x\right)}{2^{2 n}}\right\}$ replace x by $2^{m} x$ and divided by $2^{2 m}$ in (2.6), for any $n, m>0$ we get

$$
\begin{align*}
\left\|\frac{g\left(2^{n+m} x\right)}{2^{2(n+m)}}-\frac{g\left(2^{m} x\right)}{2^{2 m}}\right\|_{Y} & =\frac{1}{2^{2 m}}\left\|\frac{g\left(2^{n+m} x\right)}{2^{2 n}}-g\left(2^{m} x\right)\right\|_{Y} \\
& \leq \frac{\lambda}{8(n-5) 2^{2 m}} \sum_{k=0}^{n-1} \frac{2^{s k}}{2^{2 k}}\left\|2^{m} x\right\|_{X}^{s} \\
& \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{2^{s(k+m)}}{2^{2(k+m)}}\|x\|_{X}^{s} \\
& \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{1}{2^{(2-s)(k+m)}}\|x\|_{X}^{s} \tag{2.7}
\end{align*}
$$

As $s<2$, the R.H.S. of (2.7) tends to 0 as $m \rightarrow \infty$ for all $x \in X$. Thus $\left\{\frac{g\left(2^{n} x\right)}{2^{2 n}}\right\}$ is a Cauchy sequence. Since Y is complete, there exists a mapping $A: X \rightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{2^{2 n}}, \forall x \in X
$$

Taking $n \rightarrow \infty$ in (2.6), we have at the formula (2.2) for all $x \in X$. To prove A satisfies (1.1), replace $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $\left(2^{n} x_{1}, 2^{n} x_{2}, \ldots, 2^{n} x_{n}\right)$ in (2.1) and divided by $2^{2 n}$ then it follows that

$$
\begin{array}{r}
\frac{1}{2^{2 n}}\left\|g\left(\sum_{i=1}^{n} 2^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(2^{n}\left(-x_{j^{+}} \sum_{i=1, i \neq j}^{n} x_{i}\right)\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(2^{n}\left(x_{i}+x_{j}\right)\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(2^{n} x_{i}\right)\right\|_{Y} \\
\leq \frac{\lambda}{2^{2 n}}\left\{\left\|2^{n} x_{1}\right\|_{X}^{s}+\left\|2^{n} x_{2}\right\|_{X}^{s}+\ldots,+\left\|2^{n} x_{n}\right\|_{X}^{s}\right\} .
\end{array}
$$

Again taking limit as $n \rightarrow \infty$ in the above inequality, we have

$$
\left\|A\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} A\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} A\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} A\left(x_{i}\right)\right\|_{Y}=0
$$

which gives

$$
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Therefore $A: X \rightarrow Y$ is an orthogonally quadratic mapping which satisfies (1.1).
To prove the uniqueness of A . Let B be another quadratic function satisfying (1.1) and the inequality (2.2). Then

$$
\begin{aligned}
\|A(x)-B(x)\|_{Y} & =\frac{1}{2^{2 n}}\left\|A\left(2^{n} x\right)-B\left(2^{n} x\right)\right\|_{Y} \\
& \leq \frac{1}{2^{2 n}}\left(\left\|A\left(2^{n} x\right)-g\left(2^{n} x\right)\right\|_{Y}+\left\|g\left(2^{n} x\right)-B\left(2^{n} x\right)\right\|_{Y}\right) \\
& \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{1}{2^{(2-s)(k+m)}}\|x\|_{X}^{s} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Therefore A is unique. This completes the proof of the theorem.
Theorem 2.2 Let λ and $s(s>2)$ be non-negative real numbers. Let $g: X \rightarrow Y$ be a mapping fulfilling

$$
\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} .
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda\|x\|_{X}^{s}}{2(n-5)\left(2^{s}-2^{2}\right)} \tag{2.9}
\end{equation*}
$$

for all $x \in X$.
Proof. Replacing x by $\frac{x}{2}$ in (2.3), we arrive

$$
\begin{equation*}
\left\|4 g\left(\frac{x}{2}\right)-g(x)\right\|_{Y} \leq \frac{1}{2(n-5) 2^{s}} \lambda\left\{\|x\|_{X}^{s}\right\} \tag{2.10}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $\frac{x}{2}$ and multiply by 4 in (2.10), we obtain

$$
\begin{equation*}
\left\|4 g\left(\frac{x}{2}\right)-2^{4} g\left(\frac{x}{2^{2}}\right)\right\|_{Y} \leq \frac{\lambda}{2(n-5) 2^{2(s-1)}}\|x\|_{X}^{s} \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11), we get

$$
\begin{equation*}
\left\|g(x)-2^{4} g\left(\frac{x}{2^{2}}\right)\right\|_{Y} \leq \frac{\lambda}{2(n-5) 2^{s}}\left\{1+\frac{1}{2^{s-2}}\right\}\|x\|_{X}^{s} \tag{2.12}
\end{equation*}
$$

for all $x \in X$. Using the induction on n , we receive

$$
\begin{equation*}
\left\|2^{2 n} g\left(\frac{x}{2^{n}}\right)-g(x)\right\|_{Y} \leq \frac{\lambda}{2(n-5) 2^{s}} \sum_{k=0}^{n-1} \frac{2^{2 k}}{2^{s k}}\|x\|_{X}^{s} \leq \frac{\lambda}{2(n-5) 2^{s}} \sum_{k=0}^{\infty} \frac{2^{2 k}}{2^{s k}}\|x\|_{X}^{s} \tag{2.13}
\end{equation*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{2^{2 n} g\left(\frac{x}{2^{n}}\right)\right\}$ replace x by $\frac{x}{2^{m}}$ and multiply by $2^{2 m}$ in (2.13), for any $n, m>0$ we get

$$
\begin{align*}
\left\|2^{2(n+m)} g\left(\frac{x}{2^{n+m}}\right)-2^{2 m} g\left(\frac{x}{2^{m}}\right)\right\|_{Y} & =2^{2 m}\left\|2^{2 n} g\left(\frac{x}{2^{n+m}}\right)-g\left(\frac{x}{2^{m}}\right)\right\|_{Y} \\
& \leq \frac{2^{2 m} \lambda}{2(n-5) 2^{s}} \sum_{k=0}^{n-1} \frac{2^{2 k}}{2^{s k}}\left\|\frac{x}{2^{m}}\right\|_{X}^{s} \tag{2.14}
\end{align*}
$$

As $s>2$, the R.H.S. of (2.14) tends to 0 as $m \rightarrow \infty$ for all $x \in X$. Thus $\left\{2^{2 n} g\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence. Since Y is complete, there exists a mapping $A: X \rightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty} 2^{2 n} g\left(\frac{x}{2^{n}}\right), \forall x \in X
$$

Taking $n \rightarrow \infty$ in (2.13), we have at the formula (2.9) for all $x \in X$. To prove the uniqueness of A and it satisfies the equation (1.1), the proof is similar to that of Theorem 2.1
3. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1) involving Constant only.
Theorem 3.1 Let λ be non-negative real number. Let $g: X \rightarrow Y$ be a mapping fulfilling
$\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} \leq \lambda$
for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda}{6(n-5)} \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Setting $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(0,0, \ldots, 0)$ in (3.1), we have $f(0)=0$. Replacing $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $(x,-x, x,-x, x, 0, \ldots, 0)$ in (3.1), we obtain

$$
\begin{equation*}
\|2(n-5) g(2 x)-8(n-5) g(x)\|_{Y} \leq \lambda \tag{3.3}
\end{equation*}
$$

for all $x \in X$. Since $x \perp 0$, we get

$$
\begin{equation*}
\left\|\frac{g(2 x)}{4}-g(x)\right\|_{Y} \leq \frac{1}{8(n-5)} \lambda \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $2 x$ and divided by 4 in (3.4) and summing the resulting inequality with (3.4), we obtain

$$
\begin{equation*}
\left\|\frac{g\left(2^{2} x\right)}{2^{4}}-g(x)\right\|_{Y} \leq \frac{\lambda}{8(n-5)}\left\{1+\frac{1}{2^{2}}\right\} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Using the induction on n , we receive

$$
\begin{equation*}
\left\|\frac{g\left(2^{n} x\right)}{2^{2 n}}-g(x)\right\|_{Y} \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{n-1} \frac{1}{2^{2 k}} \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{1}{2^{2 k}} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{\frac{g\left(2^{n} x\right)}{2^{2 n}}\right\}$ replace x by $2^{m} x$ and divided by $2^{2 m}$ in (3.6), for any $n, m>0$ we get

$$
\begin{aligned}
\left\|\frac{g\left(2^{n+m} x\right)}{2^{2(n+m)}}-\frac{g\left(2^{m} x\right)}{2^{2 m}}\right\|_{Y} & =\frac{1}{2^{2 m}}\left\|\frac{g\left(2^{n+m} x\right)}{2^{2 n}}-g\left(2^{m} x\right)\right\|_{Y} \\
& \leq \frac{\lambda}{8(n-5) 2^{2 m}} \sum_{k=0}^{n-1} \frac{1}{2^{2 k}}
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{1}{2^{2(k+m)}} \tag{3.7}
\end{equation*}
$$

As $s<2$, the R.H.S. of (3.7) tends to 0 as $m \rightarrow \infty$ for all $x \in X$. Thus $\left\{\frac{g\left(2^{n} x\right)}{2^{2 n}}\right\}$ is a Cauchy sequence. Since Y is complete, there exists a mapping $A: X \rightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty} \frac{g\left(2^{n} x\right)}{2^{2 n}}, \forall x \in X .
$$

Taking $n \rightarrow \infty$ in (3.6), we have at the formula (3.2) for all $x \in X$. To prove A satisfies (1.1), replace $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ by $\left(2^{n} x_{1}, 2^{n} x_{2}, \ldots, 2^{n} x_{n}\right)$ in (3.1) and divided by $2^{2 n}$ then it follows that

$$
\begin{gathered}
\frac{1}{2^{2 n}}\left\|g\left(\sum_{i=1}^{n} 2^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(2^{n}\left(-x_{j^{+}} \sum_{i=1, i \neq j}^{n} x_{i}\right)\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(2^{n}\left(x_{i}+x_{j}\right)\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(2^{n} x_{i}\right)\right\|_{Y} \\
\leq \frac{\lambda}{2^{2 n}}
\end{gathered}
$$

Again taking limit as $n \rightarrow \infty$ in the above inequality, we have

$$
\left\|A\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} A\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} A\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} A\left(x_{i}\right)\right\|_{Y}=0
$$

which gives

$$
g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)=(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)+\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Therefore $A: X \rightarrow Y$ is an orthogonally quadratic mapping which satisfies (1.1).
To prove the uniqueness of A. Let B be another quadratic function satisfying (1.1) and the inequality (3.2). Then

$$
\begin{aligned}
\|A(x)-B(x)\|_{Y} & =\frac{1}{2^{2 n}}\left\|A\left(2^{n} x\right)-B\left(2^{n} x\right)\right\|_{Y} \\
& \leq \frac{1}{2^{2 n}}\left(\left\|A\left(2^{n} x\right)-g\left(2^{n} x\right)\right\|_{Y}+\left\|g\left(2^{n} x\right)-B\left(2^{n} x\right)\right\|_{Y}\right) \\
& \leq \frac{\lambda}{8(n-5)} \sum_{k=0}^{\infty} \frac{1}{2^{(2-s)(k+m)}} \quad \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Therefore A is unique. This completes the proof of the theorem.
Theorem 3.2 Let λ be non-negative real numbers. Let $g: X \rightarrow Y$ be a mapping fulfilling

$$
\begin{equation*}
\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} \leq \lambda \tag{3.8}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda}{-6(n-5)} \tag{3.9}
\end{equation*}
$$

for all $x \in X$.
Proof. Replacing x by $\frac{x}{2}$ in (3.3), we arrive

$$
\begin{equation*}
\left\|4 g\left(\frac{x}{2}\right)-g(x)\right\|_{Y} \leq \frac{1}{2(n-5)} \lambda \tag{3.10}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $\frac{x}{2}$ and multiply by 4 in (3.10), we obtain

$$
\begin{equation*}
\left\|4 g\left(\frac{x}{2}\right)-2^{4} g\left(\frac{x}{2^{2}}\right)\right\|_{Y} \leq \frac{2^{2} \lambda}{2(n-5)} \tag{3.11}
\end{equation*}
$$

From (3.10) and (3.11), we get

$$
\begin{equation*}
\left\|g(x)-2^{4} g\left(\frac{x}{2^{2}}\right)\right\|_{Y} \leq \frac{\lambda}{2(n-5)}\left\{1+\frac{1}{2^{-2}}\right\} \tag{3.12}
\end{equation*}
$$

for all $x \in X$. Using the induction on n , we receive

$$
\begin{equation*}
\left\|2^{2 n} g\left(\frac{x}{2^{n}}\right)-g(x)\right\|_{Y} \leq \frac{\lambda}{2(n-5)} \sum_{k=0}^{n-1} 2^{2 k} \leq \frac{\lambda}{2(n-5)} \sum_{k=0}^{\infty} 2^{2 k} \tag{3.13}
\end{equation*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{2^{2 n} g\left(\frac{x}{2^{n}}\right)\right\}$ replace x by $\frac{x}{2^{m}}$ and multiply by $2^{2 m}$ in (3.13), for any $n, m>0$ we get

$$
\begin{align*}
\left\|2^{2(n+m)} g\left(\frac{x}{2^{n+m}}\right)-2^{2 m} g\left(\frac{x}{2^{m}}\right)\right\|_{Y} & =2^{2 m}\left\|2^{2 n} g\left(\frac{x}{2^{n+m}}\right)-g\left(\frac{x}{2^{m}}\right)\right\|_{Y} \\
& \leq \frac{2^{2 m} \lambda}{2(n-5)} \sum_{k=0}^{n-1} 2^{2 k} \tag{3.14}
\end{align*}
$$

As $s>2$, the R.H.S. of (3.14) tends to 0 as $m \rightarrow \infty$ for all $x \in X$. Thus $\left\{2^{2 n} g\left(\frac{x}{2^{n}}\right)\right\}$ is a
Cauchy sequence. Since Y is complete, there exists a mapping $A: X \rightarrow Y$ such that

$$
A(x)=\lim _{n \rightarrow \infty} 2^{2 n} g\left(\frac{x}{2^{n}}\right), \forall x \in X .
$$

Taking $n \rightarrow \infty$ in (3.13), we have at the formula (3.9) for all $x \in X$. To prove the uniqueness of A and it satisfies the equation (1.1), the proof is similar to that of Theorem 3.1
4. Stability of the Orthogonally Euler-Lagrange Type Functional Equation (1.1)
involving Sum of the Product of Powers of Norms

Theorem 4.1 Let λ and $s\left(s<\frac{2}{n}\right)$ be non-negative real numbers. Let $g: X \rightarrow Y$ be a mapping fulfilling

$$
\begin{array}{r}
\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} \\
\leq \lambda\left\{\left(\left\|x_{1}\right\|_{X}^{s}\left\|x_{2}\right\|_{X}^{s} \ldots\left\|x_{n}\right\|_{X}^{s}\right)+\left(\left\|x_{1}\right\|_{X}^{n s}+\left\|x_{2}\right\|_{X}^{n s}+\ldots+\left\|x_{n}\right\|_{X}^{n s}\right)\right\}
\end{array}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda\|x\|_{X}^{n s}}{2(n-5)\left(2^{2}-2^{n s}\right)}
$$

for all $x \in X$.
Proof. The proof is same as the proof of Theorem 2.1.
Theorem 4.2 Let λ and $s\left(s>\frac{2}{n}\right)$ be non-negative real numbers. Let $g: X \rightarrow Y$ be a mapping fulfilling

$$
\begin{array}{r}
\left\|g\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{j=1}^{n} g\left(-x_{j}+\sum_{i=1, i \neq j}^{n} x_{i}\right)-(n-3) \sum_{1 \leq i<j \leq n} g\left(x_{i}+x_{j}\right)-\left(-n^{2}+5 n-2\right) \sum_{i=1}^{n} g\left(x_{i}\right)\right\|_{Y} \\
\leq \lambda\left\{\left(\left\|x_{1}\right\|_{X}^{s}\left\|x_{2}\right\|_{X}^{s} \ldots\left\|x_{n}\right\|_{X}^{s}\right)+\left(\left\|x_{1}\right\|_{X}^{n s}+\left\|x_{2}\right\|_{X}^{n s}+\ldots+\left\|x_{n}\right\|_{X}^{n s}\right)\right\}
\end{array}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ with $x_{1} \perp x_{2} \perp \ldots \perp x_{n}$. Then there exists a unique orthogonally quadratic mapping $A: X \rightarrow Y$ such that

$$
\|g(x)-A(x)\|_{Y} \leq \frac{\lambda\|x\|_{X}^{n s}}{2(n-5)\left(2^{n s}-2^{2}\right)}
$$

for all $x \in X$.
Proof. The proof is same as the proof of Theorem 2.2.

References

[1] J. Alonso and C. Benitez, Orthogonality in normed linear spaces: survey I. main properties, Extracta Math., Vol. 3, (1988), 1-15.
[2] J. Alonso and C. Benitez, Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math., Vol. 4, (1989), 121-131.
[3] F. Drjevic, On a functional which is quadratic on a orthogonal vectors, Publ. Inst. Math., Vol. 54, (1986), 63-71.
[4] M. Fochi, Functional equations in a orthogonal vectors, Aequationes Math., Vol. 38, (1989), 28-40.
[5] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Vol. 184, (1994), 431-436.
[6] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math., Vol. 43, (1995), 143-151.
[7] V.Govindan, S.Murthy, M.Saravanan, Generalized Ulam-HyersStability of two types of n-dimensional Quadratic functional equationin Banach Space: Direct and Fixed Point Methods. Int. J. Math Trends and its Tech., Vol. 51(6), (2017), 396-403
[8] V.Govindan, S.Murthy, G.Kokila, Fixed point and stability of icosic functional equation in quasi beta normed spaces, Malaya J. mathematic, Vol. 6(1),(2018), 261-275
[9] V. Govindan and K. Tamilvanan, Stability of Functional Equation in Banach Space: Using Two Different Methods, Int. J. Math. And Appl., Vol. 6(1-C), (2018), 527-536.
[10] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. Vol. 58, (1995), 427-436.
[11] L. Paganoni and J. Ratz, Conditional functional equations and orthogonal additivity, Aequationes math., Vol. 50, (1995), 135-142.
[12] C. Park and Th. M. Rassias, Fixed points and stability of the Cauchy functional equation, Australian J. Math. Anal. Appl., Vol. 6(1), (2009), 1-9.
[13] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., USA, Vol. 46, (1982), 126-130.
[14] J. M. Rassias, On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci., Vol. 28, (1994), 231-235.
[15] J. M. Rassias, On the stability of the general Euler-Lagrange functional equation, Demonstratio Math., Vol. 29, (1996), 755-766.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Vol. 72, (1978), 297-300.

