Case Study on Lean Manufacturing System Implementation in Batch Type Manufacturing Industry

R. S. Katikar

Associate Professor, Sinhgad College of Engineering, Pune, Maharashtra, India Email author: rskatikar.scoe@sinhgad.edu

ABSTRACT

To survive in today's competitive manufacturing era, every industry should take the decision to manufacture parts/components of good quality with minimum waste. The manufacturing industries always look for their better performance by minimizing the wastage of the parts manufactured and it depends upon technology /resources used for it. Lean management aims at finding out and eliminating /reduction all types of wastes. This can be achieved by a variety of lean management tools and techniques. Industries primarily choose to engage in lean manufacturing to increase customer responsiveness and product quality and also reduction in requirement of production resource and costs. This paper describes the reduction of total defectives of a component manufactured in batches. The data was collected by observing existing method of production and defects associated with each operation were noted for the component selected under case study. Root cause analysis was used to find out the causes for these defects and certain remedial measures were applied to correct those defects.

Keywords: Lean manufacturing, Quality Improvement, 5S, Waste reduction.

1.INTRODUCTION

The growing complexity of industrial manufacturing and the need for higher efficiency, greater flexibility, better product quality and lower cost have changed the face of manufacturing practice. To flourish and survive in today's competitive global marketplace, industries are increasingly focusing on their producing good quality of parts /components with minimum wastage by use of available resources for better performance. In today's competitive economic environment, customers do not just prefer but demand from manufacturers to provide quality products in a timely fashion at competitive prices. To satisfy this requirement, manufacturers need to plan necessary and optimum use of resources to meet market demands. However, waste reduction is a very challenging task for manufacturing industry for better performance. Lean manufacturing is focused on getting the right things, to the right place, at the right time, in the right quantity to achieve perfect work flow while minimizing waste and being flexible and able to change. The main principles of lean manufacturing are zero waiting time, zero inventory, internal customer pull instead of push, reduced batch sizes, and reduced process times. Wastes have a direct impact on the cost of the product; they are non value adding operations which the customer will not pay for it. Typically in manufacturing industries only 5% of activities from total activities are value added and all the rest activities are non value added i.e. waste. Minimization of this waste can help in improving performance of industry in term of quality, profitability and customer satisfactions. Hence lean thinking has become extremely important in this era of global competition. The core idea behind lean manufacturing is to maximize customer value while minimizing wastage. This can help create more value for the customers with the usage of fewer resources. The goal of any industry is to earn profit by selling quality products at a price higher than the cost of the effort and materials used. This can be achieved by converting raw material into something of greater value using various manufacturing processes.

The rest of this paper is organized as follows. In Section 2, literature review for waste, lean principles and techniques. Introduction and Methodology used in Case study will be given in section 3. While Section 4 illustrates work carried out a case study in which proposed methodology is applied and finally, with concluding remarks paper would end.

2. LITERATURE REVIEW

2.1Seventypes of wastes:

The principle or philosophy of the lean concept is the ways to identify and eliminate waste to enhance the processes and products with the customer requirement and creating a system to pull in the process to ensure a continuous flow of processes, and improve continuously to enhance their processes and products regularly to eliminate waste in the production process. Different authors [Singh Sumit Kumar et. al (2014), Chanarungruengkij Veerasak. et. al (2017), Charles Okpala (2014), Khalil A,.et. al (2013)] were considered the types of wastes to explain lean concept in their research work. Following are the most commonly seven types of waste used in Lean concept.

a) Over Production: Overproduction deals with making more products than required one. Manufacturing of products in advance or in excess of demand consumes money, time, space etc. **b)Waiting** : Waiting is idle time for workers or machines due to bottlenecks or inefficient production flow on the factory floor. Manufacturing processes start becoming ineffective when human workers have to wait or machines have to stay idle for any amount of time due to incompletion of previous operations. If workers have to wait, resources are consumed while no value is added. Similarly machine down time also doesnot add value.

c) Transportation: Unnecessary moving of products from one place to another does not add any value to the product and adds to the cost. Also there are chances of product deterioration during movement. Transportation cannot be completely eliminated, but it can be reduced. By use of proper handling system, good plant layout etc. can help in reducing transportation.

d) Over processing: This includes using more energy, time, resources than actual required for manufacturing a product. It may include unnecessary use of costly and large machinery in cases where even small machines could have been used, unnecessarily tight tolerances, finishing the product beyond the required limit etc. Usage of standard operating procedures (SOP's), proper design of products can help avoid this waste.

e) Excess Inventory: Inventory is the raw materials, work in progress (WIP) components and finished goods which are being held in the organization. Holding of inventory has various costs associated with it. Hence it is necessary to avoid holding excess inventory. JIT manufacturing principles can be used to reduce inventory losses.

f) Motion: It consists of any unnecessary movement of people which will not add any value to the component. Unnecessary movements can cause fatigue to the workers, thus reducing their efficiency and also increase the cycle time. Proper arrangement of work station and motion studies can help in resolving the problem.

g) Defects: In addition to physical defects which directly add to the costs of goods sold, this may include errors in paperwork, provision of incorrect information about the product, late delivery, production to incorrect specifications, use of too much raw materials or generation of unnecessary scrap, time and cost spent in the inspection and repairing / reworking of defects. They may be caused by incorrect design, improper process etc. Using Jidoka, standard processes can help in minimizing these defects.

2.2 Lean Manufacturing Principles:

The theory of lean manufacturing is based on following the principles to achieve the desired goals of the industry.

Sr.No	Lean manufacturing principles	What it means?	Enablers	Authors/ Website
1	Standardization	Standardized work procedure to do routine and repetitive works to improve efficiency and quality.	work procedure,	Chaple A.P. et al (2014)
2	Simple and specified pathways	Flow of work to the right machine or person in the right form at the right time at the lowest cost with the highest quality possible which reduces production lead time.	Kanban system, JIT	
3	Teaching and learning	Through continuous effort of managers and supervisors acting as enablers or mentor in solving problems.	of problem solving	
4	Socialization	An atmosphere of trust, respect and common purpose in which work is performed to improve efficiency and productivity		
5	Continuous improvement		Kaizen, TQM, Six Sigma, JIT etc.	
6	Supplier - customer relationship	Supplier-customer relationship specifies the form and quantity of the goods and services to be provided, the way requests are made by each customer, and the expected time in which the request will met.	relationship	
7	e	Coordination through rich communication is required to develop the idea into an innovation.	of suppliers early	
8	Functional expertise and stability	Every company depends on highly skilled engineers , designers, and technicians to bring a product to the market; it is about developing standard set of skills	Merit rating	

9	Pursuit for perfection	A common sense of the ideal	Sharing a common	Chaple A P
,	striving for ideal goal		goal	et al (2014)
10	Cultivating organizational knowledge	The faith of organization that	Knowledge sharing practices	
11		By clearing defining value for a specific product or service from the end customer's, perspective, all the non value activities-or waste-can be targeted for removal.	Quality Function Deployment(QFD)	Nasution Abdillah Arif . et al (2018), http://www.car diff.ac.uk/lean/ principles/
12	Identify and Map the Value Stream	The Value Stream is the entire set of activities across all parts of the organization involved in jointly delivering the product or service. This represents the end-to-end process that delivers the value to the customer.	mapping	r -
13	Create Flow by Eliminating Waste	Eliminating waste ensures that the product or service flows to the customer without interruption ,detour or waiting	to small machine	
14	Respond to Customer Pull	Understanding the customer demand on the service available and creating the process to respond to service required which help the industry to produce what and when customer wants.		
15	Pursue Perfection	Creating flow and pull starts with radically reorganising individual process steps, but the gains become truly significant as the entire steps link together. As this happens more and more layers of waste become visible and the process continues towards the theoretical end Point of perfection, where every asset and every action adds value for the end customer.		

2.3 Lean Manufacturing Techniques:

Once the industry identify the major sources of waste, tools such as provided will guide the companies through corrective action so as to eliminate wastes. Implementation of lean manufacturing involves use of the following techniques:

Table No.2.2 Lean Manufacturing techniques

Sr.	Technique	Description	Enablers
No	Name		
1	Work place	One of the most effective tools of continuous	Michalska J., Szewieczek
	Organisation 55	improvement is 5S, which is the basis for an	
	System	effective lean company. 5S is a first, modular	_
		step toward serious waste reduction.5S consists	
		of the Japanese words Seiri (Sort), Seiton	-
		(Straighten), Seiso (Shine and Sweep), Shitsuke	
		(Standardize), and Seiketsu (Sustain). 5S is	
		aimed at improving productivity of the organization and achieve cleanliness and	Salhong Tang.et. al (2016)
		standardization of the workplace.	. Patel Vipulkumar C and
		standardization of the workplace.	Thakkar Hemant (2014)
2	Jidoka	Jidoka highlights the causes of problems when	http://leanmanufacturing
		they first occur. This helps in improving the	<u>tools</u> .org/489/jidoka/
		processes by eliminating the root cause of defects	
3	Kaizen	Kaizen is the practice of continuous improvement	
		This implies that small, incremental change	
		routinely applied and sustained over a long period	5
		result in significant improvements. It aims a	
		continuous improvement to fall functions and	· · ·
		employees ranging from the management to the	
		line workers.	Kaumar S. (2014)
			Gundeep Singh and Dr.
4			Belokar R.M.,(2012)
4	•	PDCA cycle consists of four stages which are:	Salvaria Mat al (2010)
		Plan: Define the problem to be addressed, collect	Sokovic, M.et. al (2010) Gill Preetinder Singh
		relevant data, and as certain the problem's root cause.	(2012)
		Do: Develop and implement a solution;	
		decide upon a measurement to gauge its	
		effectiveness.	
		Check: Confirm the results through before-and-	
		after data comparison.	
		Act: Document the results, inform others about	
		process changes, and make recommendations for the problem to be addressed in the next	
		PDCAcycle.	
	1		

3.

5	Root Cause	Root cause analysis helps identify how and why	Gosavi Vineet V., et.al
5		something happened, thus aiding in the prevention	
	Analysis	of it's reoccurrence. It involves collection of data,	(2014)
		· · · · · · · · · · · · · · · · · · ·	
6	T. (1	analysis and giving recommendations.	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
6	Total Productive	Total Productive Maintenance (TPM) seeks to	
		engage all levels and functions in an organization	
	Maintenance		Saihong Tang .et. al
		production equipment. Machine breakdown is one	
		of the most important issues that concern the	
		people on the shop floor. The reliability of the	
		equipment on the shop floor is very importan	
		since if one machine breaks down the entire	
		production line could go down. An important too	
		that is necessary to account for sudden machine	
		breakdown is total productive maintenance.	
7	Just-in-time	JIT enables a industry to produce the products it	Kaumar S. (2014)
	Production	customer's want, when they want them, in the	
	Systems/Kanba	amount they want. JIT techniques work to leve	
	n	production, spreading production evenly over time	
		to foster a smooth flow between processes. Many	
		Industries asked the suppliers to delive	
		components using JIT to have significan	
		reduction in waste associated with unnecessary	
		inventory, WIP, packaging, and overproduction.	
8	Six-Sigma	Six Sigma's toolbox of statistical process contro	Kaumar S. (2014)
		and analytical techniques are being used by some	
		industries to assess process quality and waste area	
		to which other lean methods can be applied a	
		solutions. Six-Sigma is also being used to furthe	
		drive productivity and quality improvements in	
		lean operations.	
9	Value Stream	Value Stream Mapping is a lean-managemen	Gill Preetinder Singh,
	Mapping	method for analyzing the current state and	(2012),
		designing a future state for the series of events tha	Kshitij Mohan Sharma
		take a product or service from its beginning	and Surabhi Lata (2016),
		through to the customer. A value stream map is an	
		advanced form of process map that focuse	
		particularly on the lean principles of value and	
		flow within the process.	
L		*	

3.CASE STUDY

3.1Introduction:

A case study was carried out at an industry XYZ situated near Pune, India which produces over 60 components and supplies to leading valve manufacturers in India. The component selected for study was valve body cap which having major volume and total defective relatively high. The volume of production of this component is in the range of thousands per month. The goal of this research is to find out the defects and causes which cause the defect and eliminating the root causes of making defective components at Industry XYZ. This goal is accomplished by establishing a direct communication and collaboration with every level of industry XYZ infrastructure, from the machine operators to management.

3.2 Methodology:

Following Table No. 3.1 shows the methodology used to carry out the actual work.

Sr. No	Name of Step	Description	Tool/Technique
1	Problem Definition	objective of study	Research Paper, Industry report, Visual physical observation
2	Data Collection	Collection of the available data. Finding the reasons for rejection of the components. Listing of data classification and all the reasons for the rejection.	Physical Measurement
3	Root Cause Analysis	Enlisting of the probable root causes for all the problems. Preparation of Fish Bone diagram for the listed causes	_
4	Corrective Action	Deciding corrective actions for all causes and its step by step implementation	Work place Organisation 5S System
5	Post Implementation	After implementation the next step is to monitoring of all the measures for achieving the objective.	PDCA cycle
6	Regular Audit	This stage involves the monitoring of remedial measures to <u>ensure</u> that the corrective actions are implemented as per plan.	

4. WORK CARRIED OUT

4.1 Problem Definition: The component selected for study is valve body cap, which is having major volume and total defective relatively high. The volume of production of this component is in the range of thousands per month. The scope of this research involves areas within the industry focusing production flow, identification of defects in each operation for part manufactured and corrective action for it. The objective is to improve the quality of the component.

4.2 Data Collection: The data was collected by observing existing method of production and defects associated with each operation were noted for the component selected under case study. This data was classified and all the reasons for rejection were subsequently listed. Following Table No.4.1 shows the defects associated with each operation performed on component selected for case study start from raw material stage to final operation.

Step no.	Operation Performed	Tool Used	Defects Associated With This Step	No.of Defects
1	Raw Materials		Hex oversize and undersize	02
	Inspection	Destructive	Crack	01
		Testing (Magna Flux)	Damaged raw material	01
2	Drilling and Semi-finish	Automat	Total length undersize and oversize	02
	turning	Machines	Step length undersize and oversize	02
			Die oversize and undersize	02
			Drill Dia. Oversize and undersize	02
			Chamfer missing	01
3	Machining (Facing,	CNC Machine	Flat Thread	01
	Chamfering, Drilling,		OD oversize	01
	Reaming, Threading)		OD under size	01
			ID oversize	01
			ID under size	01
			Total length oversize	01
			Total length undersize	01
			Thread No Gopass	01
			Thread Go undersize	01
			Thread damage	01
			ID unclean	01
			Rough Turning surface	01
			Step length oversize and undersize	02
			Dia .XX mm Go tight and No Go	02
			pass	
			Dia .YY mm Go tight and NoGo pass	02
4	Machining (Turning,	CNC Machine	Thread No Go pass and Go undersize	
	Facing, Threading, Face		Thread Damage	01
	milling, ID Boring)		ID unclean	01
			Step on surface	01
			Rough Surface	01
			Depth oversize and under size	02
			Dia .XX mm oversize and under size	02
5	Burnishing	Drilling	Inner Dia over size	01
	-	Machine	Scratches on inner diameter	01
			Poor surface finish	01
6	Final Inspection	Various	Thread undersize and oversize	02
	-	inspection tools	Flat thread	01
		-	Thread Face	01
			Dia .XX mm oversize and under size	02
			Rust	01
			Dent	01
			Face damage	01
			Chamfer oversize/ missing	01
			Hex damage	01
			Milling oversize and undersize	02
			ID unclean	01
				1

Table No 4.1 sho	ows the defects a	associated with	each oners	ation nerform	ed on component
	JWS the defects a	issociated with	caen opera	ation periorin	cu on component

Each identified defect contributes a specific amount of defective pieces. It is necessary to find out those defects which contribute the maximum number of defective pieces. Following Table No.4.2 shows percentage defectives of each defect. Percentage defectives of each defect = (Defective pieces of that defect/Total defectives)*100

Operation Performed	Defects Associated With This Step	No. of Defectives	Percent Defectives
Raw Materials Inspection	Hex oversize and undersize	00	00000
*	Crack	69	2.9870
	Damaged raw material	00	00000
Drilling and Semi-finish	Total length undersize and oversize	18	0.7792
urning	Step length undersize and oversize	00	00000
	Die oversize and undersize	00	00000
	Drill Dia. Oversize and undersize	00	00000
	Chamfer missing	02	0.0866
Machining (Facing,	Flat Thread	02	0.0866
Chamfering, Drilling,	OD oversize	30	1.2987
Reaming, Threading)	OD under size	12	0.5195
	ID oversize	117	5.0649
	ID under size	111	4.8052
	Total length oversize	38	1.6450
	Total length undersize	132	5.7143
	Thread No Go pass	165	7.1429
	Thread Go undersize	30	1.2987
	Thread damage	00	00000
	ID unclean	01	0.0433
	Rough Turning surface	04	0.1732
	Step length oversize and undersize	00	00000
	Dia .XX mm Go tight and No Go pass	00	00000
	Dia .YY mm Go tight and NoGo pass	06	0.2597
Machining (Turning	Thread No Go pass and Go undersize	02	0.0866
	Thread Damage	00	00000
nilling, ID Boring)	ID unclean	02	0.0866
	Step on surface	00	00000
	Rough Surface	00	00000
	Depth oversize and under size	00	00000
	Dia .XX mm oversize and under size	00	00000
Burnishing	Inner Dia over size	00	00000
Jurnishing	Scratches on inner diameter	187	8.0952
	Poor surface finish	00	00000
Final Inspection	Thread undersize and oversize	02	0.0866
mai inspection	Flat thread	02	0.0800
	Thread Face	33	1.4286
	Dia .XX mm oversize and under size	00	00000
	Rust	215	9.3074
		07	0.3030
	Dent Face damage	516	22.338
	Face damage		
	Chamfer oversize/ missing	29	1.2554
	Hex damage	188	8.1385
	Milling oversize and undersize	92	3.9827
	ID unclean	293	12.684
	Hex draw mark	07	0.3030

Table No.4.2 Percentage defectives of each defect

Following observation were made after analysis of the data from Table No.4.2

Component were rejected due to total 59 number of defects

There were 12 number of top defects account for 92% of the total defectives and these were tackled carefully. From Table No.4:2 it is also seen that face damage having the highest percent 'defectives (24.31%) among all the defects which lead to defect in final component.

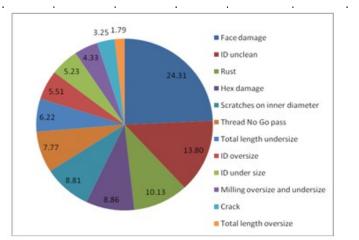


Figure No.4.1 Pie chart of top 12 percentage defectives

4.3 Root Cause Analysis: Next step is performing a root cause analysis for the defect considered in previous step for finding all cause which leads to defect. From Figure No. 4.1, it can be seen that face damage is the defect having highest percent defectives (24.31%) and hence this defect is taken for sample study. Analysis of the problem is carried out by brainstorming session which aimed at defining the scope of the problem and making a framework for further analysis. Following Table No.4.3 shows the analysis of the problem.

Description	The problem is	The problem is not
What exactly is the	ents, Scratch mark on the front\ face	Damages in other areas
problem?	f Valve body cap	of valve body cap
Where exactly does	fter blanking (handling / transit),	During blanking, during
the problem occur?	after machining, during gauging and	machining, during
	handling.	burnishing,
When exactly did the		
problem occur?		
How often did the	Daily	
problem occur?		
What is the problem	Damages were high when the	
history?	machining was done on GPM.	
	Currently machining is done in CNC	

Next a validation was performed for all the probable root cause and a validation report was prepared highlighting the verification results and significance. Following Table No.4.4 shows the validation report.

Sr.No.	Probable root Cause	Verification	Verification Results	Significant/Not significar
1	100% Thread Gauging	1000 Nos checked for face damage	One number found not ok after I00% Gauging	
2	Mishandling	50Trays handling monitored	No concern found.	Not Significant
3	Uncleaned Trays	50Trays handling monitored	No concern found.	Not Significant
4	Over flow of material	25 Trays monitored for overflow	No concern found.	Not Significant
5	Improper Stacking	4 Trays monitored for improper stacking.	One number found not ok for improper stacking	Significant
6	Damaged parts with short length	10 Nos checked for face damage in short length Parts (Lower limit)	No concern found.	Not Significant
7	During air gauge checking in process	500 Nos, checked before and after air gauge Checking	No concern found.	Not Significant
8	Material Handling	5Trays monitored for material handling	No concern found.	Not Significant
9	Use of wrong trays	10 Different trays monitored.	No concern found.	Not Significant
10	rays without partition	50Trays without partition monitored through process	No concern found.	Not Significant
11	During Total Length checking in-process	Before and after Total length checking	No concern found.	Not Significant
12	Improper flooring	Storage locations monitored throughout process	No concern found.	Not Significant

Table No.4.4 Validation report

Enlisting the probable root causes for all problems. Fish Bone diagram for the listed causes

faced by Industry for productivity is shown in Figure No.4.2.

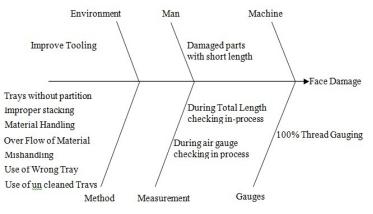


Figure No.4.2 Fish Bone diagram for the listed causes

4.4 Corrective Action

Following corrective action were suggested to minimize the defect in component for getting the better performance of the industry. a) Implementation of 5S in the production floor for effective flow, b) focusing on cleanliness and tidiness criteria, c) Up gradation of worker skill for component handling, machine operation, and processes, d)Periodic maintenance of machine, material handling devices and inspection tooling

4.5 Post Implementation

The next stage after implementation is the monitoring of all the measures. Daily meetings must be conducted to analyze and discuss the previous day's work. The PDCA cycle is used in this stage. Following Table No.4.5 shows the remedial measures taken for the defect.

Sr .No	Face damage and Hex damage	lune19	uly19	Aug19	Sept19	Dct19	Nov19	Dec19
1.1	nternal movement of blanks in trays instead o							
	gunny bags							
1.2	stacking of components should be eliminated-					Continuous Activit		
	From1rows to Single row in trays in all stages							
1.3	Component transfer between stations should b					Continuous Activi		
	through only clean trays							
1.4	Make availability of in-house facility to clean							
	the trays							
1.5	Optimization of coolant flow while threading							
	for self cleaning of chips							
1.6	Avoid multi handling of components at a time					Continuous Activit		
	during inspection and machining							
1.7	Awareness to operators about rejection and					Continuous Activit		
	actions to be taken							
1.8	Visual display and report for						Δ	∇
	damages/defectives							
1.9	Work instruction for part checking				Δ			

Table No.4.5 Remedial measures taken for the defect.

▲ :Process start, ∇ : Process finish, \triangle : Action planning start, ∇ : Action planning finished

Continuous activity

4.6 Regular Audit

This stage involves the monitoring of remedial measures to <u>ensure</u> that the corrective actions are implemented as per plan. The principle of Kaizen or continuous improvement is used ensure constant improvement on a month on <u>month-basis</u>. The small improvement points suggested which are carried out in the industry regardless of the situations present in the industry or anywhere else which might affect the performance of the industry . KAIZEN used in current situation in this industry for getting better quality of component were:

1. Advancement of automation in loading, unloading and changeover between the processes regularly.

2. Constant up gradation and Periodic maintenance of the machines.

- 3. Inspection of the safety standards.
- 4. Continuous improvement of skills of workers.
- 5. Periodic inspection and standards up gradation.
- 6. Formation of quality circles in each department.
- 7. Proper handling of materials with appropriate handling device.
- 8. Periodic maintenance of handing devices.

After the implementation of remedial measures, the bar chart for defect wise PPM is shown in Figure No.4.3 (a). The overall reduction in the total defectives of the part selected for case study is shown in Figure No.4.3(b).

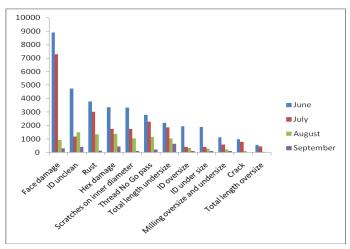


Figure No.4.3 (a) Defect wise PPM

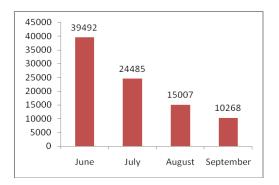


Figure No.4.3 (b) overall reduction in the total defectives

5. CONCLUSIONS

Following conclusions are drawn from this study

- Implementation of lean manufacturing has helped to reduce the overall defective components on a continuous basis.
- 74% reduction in total defectives was observed due to proper implementation of lean manufacturing, resulted in higher productivity of machines as well as humans.
- Inspection of these parts was carried out on sampling basis. However, if a lot is rejected then 100% inspection is required which resulted in reduction in defectives.
- Similar work can be carried out for the service industry.
- Similar type of work is required to be carried out for other functions in the manufacturing industry

REFERENCES

- Agrahari R. S., Dangle P.A., Chandratre K.V. ,(2015) , Implementation of 5S Methodology In The Small Scale Industry: A Case Study .International Journal of Scientific & Technology Research 4(4),pp. 180-187.
- [2] Chaple1A. P., Narkhede B. E., Akarte M. M., (2014), Status of implementation of Lean manufacturing principles in the context of Indian industry: A Literature Review. 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12th -14th, IIT,Guwahati, Assam, India.
- [3] Charles Okpala, (2014), Tackling Muda- The Inherent Wastes In Manufacturing Processes, Okpala. International Journal of Advanced Engineering Technology, 5(6), pp.6-11
- [4] Chanarungruengkij Veerasak, Saenthon Anakapon and Kaitwanidvilai Somyot, (2017), Application of Lean Manufacturing System:a Case Study of Control Cable Manufacturing. Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 (IMECS 2017),2, March 15 – 17, Hong Kong.
- [5] Gautam Rajesh, Sushil Kumar, Dr.SultanSingh,(2012), Kaizen Implementation in an Industry in India: A Case Study. International Journal of Research in Mechanical Engineering &Technology, 2(1),pp.25-33.
- [6] Ghushe Shubham, Deshmukh Shubham, Basgoti Vrushabhsingh, Yawale Yogesh, Gangasagar Pratik, and Prof. Duryodhan N. S.,(2017), A Case Study: Implementation of Lean Manufacturing Tools on a Coir Product Manufacturing Industry. International Journal of Science, Engineering and Technology, 5(2), pp. 60-65.

- [7] Gill Preetinder Singh (2012), 'Application of value stream mapping to eliminate waste in an emergency room', Global Journal of Medical Research, 12(6),pp. 51-56
- [8] Gosavi Vineet V, Dr. Inamdar K.H., (2014), 'Defect Reduction in Fabricated Components using Root -Cause Analysis', International Journal of Engineering Research &Technology (IJERT), 3(3),pp.2026-2032.
- [9] Gundeep Singh and Dr.Belokar R.M.,(2012) 'Lean manufacturing implementation in the assembly shop of tractor manufacturing company', International Journal of Innovative Technology and Exploring Engineering (IJITEE), 1(2), pp 71-74.
- [10] Kaumar S. (2014), 'Lean Manufacturing and its Implementation', International Journal of Advanced Mechanical Engineering, 4(2), pp.231-238
- [11] Khalil A.,EI- Namrouty ,Mohammed S. AbuShaaban, (2013), Seven Wastes Elimination Targeted by Lean Manufacturing Case Study- Gaza Strip Manufacturing Firms. International Journal of Economics, Finance and Management Sciences, 1(2), pp.68-80.
- [12] Kshitij Mohan Sharma and Surabhi Lata, (July-September -2016), Implementation of Lean Manufacturing in a Plastic Grain Manufacturing Company in India: A Case Study. Journal of Material Science and Mechanical Engineering (JMSME), 3(6), pp.395-400.
- [13] Michalska J., Szewieczek D.,(2007), The 5S methodology as a tool for improving the Organization. Journal of Achievements in Manufacturing and Materials, 24(2),pp.211-214.
- [14] Nasution Abdillah Arif, Siregar Ikhsan, Anizar, Nasution Tigor Hamonangan, Khalida Syahputri Indah Rizkya Tarigan (2018), Lean Manufacturing Applications in the Manufacturing Industry. MATEC Web of Conferences (201822002005),pp. 1-5.
- [15] Vipulkumar C. and Thakkar, Hemant (2014), A Case Study: 5s Implementation in Ceramics Manufacturing Company. International Journal of Industrial Engineering and Management Science ,Bonfring, 4(3),pp.132-1139.
- [16] Saihong Tang, Tanching Ng, Weijian Chong, Kahpin Chen,(2014), Case Study on Lean Manufacturing System Implementation in Batch Printing Industry Malaysia. MATEC Web of Conferences (20167005002),pp. 1-4.
- [17] Singh Sumit Kumar, Sharma Kuldeep, Kumar Deepak, Gupta Tarun (2014), Role and Importance of Lean Manufacturing in Manufacturing Industry. The International Journal Of Engineering and Science (IJES), 3(6), pp. 1-14.
- [18] Sokovic M., Pavletic D., Kem Pipan K, (2010), Quality Improvement Methodologies- PDCA Cycle, RADAR Matrix, DMAIC and DFSS.Journal of Achievements in Materials and Manufacturing Engineering,43(1),pp.476-483.

website

•

- [19] http://www.cardiff.ac.uk/lean/principles/
- [20] http://leanmanufacturing tools.org /39/lean-thinking-lean-principles/
- [21] http://lean manufacturing tools .org/489/jidoka/