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ABSTRACT. Effect of uniform and non uniform temperature gradi-
ents on Bènard-Marangoni convection in a superposed fluid and porous
(composite) layer in the presence of constant heat source (sink) is stud-
ied under microgravity condition. The Eigen value, thermal Marangoni
number, of the problem is obtained in the closed form for free-rigid
velocity boundary combinations with adiabatic and isothermal bound-
ary conditions at the boundaries. The influence of various parameters
against depth ratio is discussed. It is observed that the effect of heat
source (sink) is predominant in porous layer. The parameters influ-
ence on advancing or delaying convection is analyzed.
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1. INTRODUCTION

Marangoni convection which is induced by a surface tension gradient on
the interface is an important phenomenon under microgravity conditions.
Convection in a composite layer system consisting of two layers with a
fluid saturated porous layer underneath the fluid layer has many applica-
tions in engineering and industrial problems such as flow of water under
earth’s surface, drying silicon wafers after a wet processing step during the
manufacture of integrated circuits, self-assembling of nanoparticles into or-
dered arrays to grow ordered nanotubes, crystal growth and so on. Most of
these processes involve controlling of convection. This can be achieved by
maintaining non-uniform temperature gradients across the composite layer.
Such a temperature gradient can be generated by:
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(i) an appropriate type of heating or cooling at boundaries,
(ii) an appropriate internal heat generation

(iii) injection/suction (through-flow) of fluid at the boundaries.

Marangoni convection in composite layers is understood and well docu-
mented (see Nield [1], McKay [2], Taslim and Narusawa [3], Chen [4]. A
review is given in detail by Nield and Bejan [5] with relevant literature in-
cluding Straughan ([6], [7]), Carr [8], Chang ([9], [10], [11]), Shivakumara
et al. [12]).

Recent works on Bènard-Marangoni convection in composite layers have
thrown light on the mechanism. The condition for the onset of Marangoni
convection in the presence of temperature gradients in a two-layer system
comprising of a fluid saturated anisotropic porous beneath a fluid layer was
obtained by Shivakumara et al. [13], later Shivakumara et al. [14] extended
the study of Shivakumara et al. [13] to include the effects of internal heat-
ing. Marangoni convection driven by a power law temperature gradient was
considered by Zheng et al. [15]. Sumithra and Manjunatha [16] studied
analytically the Marangoni convection in a composite layer in the presence
of magnetic field. Sumithra [17] analyzed the double diffusive magneto-
Marangoni convection in a composite layer. Tatiana [18] used different
methods for modulation of Marangoni convection and Marangoni induced
interface deformation in non-isotherm liquid films. Marangoni convection
in a voltaic liquid film subject to a horizontal temperature gradient confined
in a rectangular cavity was studied by Li and Yoda [19]. Sankaran and Yarin
[20] analysed the evaporation driven thermocapillary Marangoni convection
in liquid layers of different depths. Influence of vertical magnetic field on
the onset of Rayleigh-Bènard-Marangoni convection in a composite layer
with deformable free surface was investigated by Anand and Gangadharaiah
[21]. Manjunatha and Sumithra [22] considered the effect of non-uniform
temperature gradients on double diffusive Marangoni convection in a two
layer system.

Internal heat source (sink) can also be used as an effective parameter
to control convection. Internal heat source (sink) may arise due to heat
released during chemical reactions in the fluid, radioactive decay, Ohmic
heating by current in conductive liquid, produced by radiation from external
medium there by helping in advancing or delaying convection. The influ-
ence of heat source sink) in convection phenomenon is studied exhaustively
(see Vanishree [23], Siddheshwar and Vanishree [24] and the references
therein).

In the present paper an attempt is made to study the effect of non-uniform
temperature gradients on Bènard-Marangoni convection in a superposed
fluid and porous layer in the presence of a constant heat source (sink) of
same strength in both the layers.
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2. FORMULATION OF THE PROBLEM

Consider a horizontal single component, fluid saturated isotropic densely
packed porous layer of thickness dm underlying a single component fluid
layer of thickness d with heat sources Qm and Q respectively. The lower
surface of the porous layer rigid and the upper surface of the fluid layer
is free with surface tension effects depending on temperature. A Cartesian
coordinate system is chosen with the origin at the interface between porous
and fluid layers and the z-axis, vertically upwards. The basic equations
governing such a system are,

O.−→q = 0 (1)

ρ0[
∂−→q
∂t

+ (−→q .O)−→q ] = −OP + µO2−→q (2)

∂T

∂t
+ (−→q .O)T = κO2T +Q (3)

Om.
−→qm = 0 (4)

ρ0[
1

ε

∂−→qm
∂t

+
1

ε2
(−→qm.Om)−→qm] = −OmPm −

µ

K
−→qm (5)

A
∂Tm
∂t

+ (−→qm.Om)Tm = κmO
2
mTm +Qm (6)

where −→q is the velocity vector, ρ0 is the fluid density, t is the time, µ is
the fluid viscosity, P is the pressure, T is the temperature, κ is the thermal
diffusivity of the fluid, Q is the constant heat source, ε is the porosity , K
is the permeability of the porous medium, A = (ρ0Cp)m

(ρ0Cp)f
is the ratio of heat

capacities, Cp is the specific heat, κm is the thermal diffusivity of the porous
layer, Qm is the constant heat source for porous layer and the subscripts ’m’
refer to the porous layer and ’f’ refer to the fluid layer.

The basic state of fluid and porous layer is quiescent, have the following
solutions

−→q = −→qb = 0, P = Pb(z), T = Tb(z) (7)
−→qm = −→qmb, Pm = Pmb(zm), Tm = Tmb(zm) (8)

Tb(z) =
−Qz(z − d)

2κ
+

(Tu − T0)h(z)

d
+ T0 0 ≤ z ≤ d (9)

Tmb(zm) =
−Qmzm(zm + dm)

2κm
+

(T0 − Tl)hm(zm)

dm
+ T0

−dm ≤ zm ≤ 0 (10)

where T0 =
κdmTu + κmdTl
κdm + κmd

+
ddm(Qmdm +Qd)

2(κdm + κmd)
is the interface temper-

ature and h(z) and hm(zm) are temperature gradients in fluid and porous
layer respectively and subscript ′b′ denote the basic state.
To study the stability of the basic state, we superimpose infinitesimally
small perturbations on the basic state for fluid and porous layer respectively
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in the form
−→q = −→qb +−→q ′, P = Pb + P ′, T = Tb(z) + θ, (11)

−→qm = −→qmb +−→qm′, Pm = Pmb + P ′m, Tm = Tmb(zm) + θm (12)

where the prime indicates the perturbations. Introducing (11) and (12) in (1)
- (6), operating curl twice and eliminate the pressure term from equations
(2) and (5), the resulting equations then non dimensionalized.

The dimensionless equations are then subjected to normal mode analysis
procedure in the form[

W
θ

]
=

[
W (z)
θ(z)

]
f(x, y)ent (13)

[
Wm

θm

]
=

[
Wm(zm)
θm(zm)

]
fm(xm, ym)enmt (14)

with O2
2f + a2f = 0 and O2

2mfm + a2mfm = 0, where a and am are the
nondimensional horizontal wave numbers, n and nm are the frequencies,
W (z) and Wm(zm) are the dimensionless vertical velocities in fluid and
porous layer respectively and obtain the following equations
in 0 ≤ z ≤ 1

(D2 − a2 +
n

Pr
)(D2 − a2)W (z) = 0 (15)

(D2 − a2 + n)θ(z) + [h(z) +R∗I(2z − 1)]W (z) = 0 (16)

in −1 ≤ zm ≤ 0

(D2
m − a2m)Wm(zm) = 0 (17)

(D2
m − a2m + Anm)θm(zm) + [hm(zm) +R∗Im(2zm + 1)]Wm(zm) = 0 (18)

where Pr is the prandtl number, R∗I =
RI

2(T0 − Tu)
, R∗Im =

RIm

2(Tl − T0)
,

RI is the internal Rayleigh number for fluid layer and RIm is the internal
Rayleigh number for porous layer.
Assume that the present problem is satisfies the principle of exchange of
stability, so putting n = nm = 0. We get,
in 0 ≤ z ≤ 1

(D2 − a2)2W (z) = 0 (19)
(D2 − a2)θ(z) + [h(z) +R∗I(2z − 1)]W (z) = 0 (20)

in −1 ≤ zm ≤ 0

(D2
m − a2m)Wm(zm) = 0 (21)

(D2
m − a2m)θm(zm) + [hm(zm) +R∗Im(2zm + 1)]Wm(zm) = 0 (22)
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3. BOUNDARY CONDITIONS

The boundary conditions are nondimensionalized and then subjected to
normal mode expansion and are

D2W (1) +Ma2θ(1) = 0,

W (1) = 0,Wm(−1) = 0, T̂W (0) = Wm(0),

T̂ d̂2(D2 + a2)W (0) = (D2
m + a2m)Wm(0),

T̂ d̂3(D3W (0)− 3a2DW (0)) = −βDmWm(0),

Dθ(1) = 0, θ(0) = T̂ θm(0),

Dθ(0) = Dmθm(0), θm(−1) = 0 (23)

where

T̂ =
Tl − T0
T0 − Tu

is the thermal ratio, M = −∂σt
∂T

(T0 − Tu)d
µκ

is the thermal

Marangoni number, β =
d2m
K

is the porous parameter and d̂ =
dm
d

is the
depth ratio.

4. METHOD OF SOLUTION

The solutions W (z) and Wm(zm) are obtained by solving (19) and (21)
using the velocity boundary conditions of (23)

W (z) = A1[cosh az + a1 sinh az + a2z cosh az + a3z sinh az] (24)
Wm(zm) = A1[a4 cosh amzm + a5 sinh amzm] (25)

where

a1 =
βam coth am

2a3d̂
, a2 = −1− (a1 + a3) tanh a, a3 =

a2m − a2d̂2

ad̂2
,

a4 = T̂ , a5 = T̂ coth am

4.1. Linear temperature profile.

Here taking

h(z) = 1 and hm(zm) = 1 (26)

Substituting equation (26) into (20) and (22), the temperature distributions
θ(z) and θm(zm) are obtained using the temperature boundary conditions,
as follows

θ(z) = A1[c1 cosh az + c2 sinh az + g1(z)] (27)
θm(zm) = A1[c3 cosh amzm + c4 sinh amzm + g1m(zm)] (28)

where
g1(z) = A1[∆1 −∆2 + ∆3 −∆4], g1m(zm) = A1[∆5 −∆6]

∆1 =
(2E1z + E2z

2)

4a
(a1 cosh az + sinh az)
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∆2 =
E2z

4a2
(cosh az + a1 sinh az)

∆3 =
(6a2z2E1 + 4a2z3E2 + 6E2z)

24a3
(a3 cosh az + a2 sinh az)

∆4 =
(E1z + E2z

2)

4a2
(a2 cosh az + a3 sinh az)

∆5 =
(2E1mzm + E2mz

2
m)

4am
(a5 cosh amzm + a4 sinh amzm)

∆6 =
E2mzm

4a2m
(a4 cosh amzm + a5 sinh amzm)

E1 = R∗I − 1, E2 = −2R∗I , E1m = −(R∗Im + 1), E2m = −2R∗Im
c1 = c3T̂ , c2 = 1

a
(c4am + δ3 − δ2),

c3 =
δ6
δ7
, c4 =

δ8
δ9
, δ1 = −A1[∆7 + ∆8 + ∆9 + ∆10]

∆7 =
(2a2E1 + E2(a

2 − 1))

4a2
(cosh a+ a1 sinh a)

∆8 =
E2 + 2E1

4a
(a1 cosh a+ sinh a)

∆9 =
(3a2 − 3)E1 + (2a2 − 3)E2

12a2
(a2 cosh a+ a3 sinh a)

∆10 =
(a2E1 + E2(a

2 + 1))

4a3
(a3 cosh a+ a2 sinh a)

δ2 = A1[
(2a2a1 − aa2)E1 + (a3 − a)E2

4a3
]

δ3 = A1[
2E1ma5

4am
− a4E2m

4a2m
]

δ4 = −A1[∆11 + ∆12]

∆11 = [
E2m − 2E1m

4am
](a5 cosh am − a4 sinh am)

∆12 = [
E2m

4a2m
](a4 cosh am − a5 sinh am)

δ5 = δ1 − (δ3 − δ2) cosh a, δ6 = δ4am cosh a+ δ5 sinh am
δ7 = am cosh am cosh a+ aT̂ sinh a sinh am
δ8 = δ4aT̂ sinh a− δ5 cosh am
δ9 = −a sinh amT̂ sinh a− am cosh a cosh am
From the boundary condition (23)1, the thermal Marangoni number for the
linear temperature profile is as follows

M1 =
−Λ1

a2(c1 cosh a+ c2 sinh a+ Λ2 + Λ3)
(29)

where
Λ1 = ∆13 + ∆14

∆13 = a2(cosh a+ a1 sinh a) + a2(a
2 cosh a+ 2a sinh a)

∆14 = a3(a
2 sinh a+ 2a cosh a)

Λ2 = (
E2 + 2E1

4a
)(a1 cosh a+ sinh a)− E2

4a2
(cosh a+ a1 sinh a)
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Λ3 = ∆15 −∆16

∆15 =
(4a2E2 + 6a2E1 + 6E2)

24a3
(a3 cosh a+ a2 sinh a)

∆16 =
(E2 + E1)

4a2
(a3 sinh a+ a2 cosh a)

4.2. Parabolic temperature profile.

For the parabolic temperature profile

h(z) = 2z and hm(zm) = 2zm (30)

Substituting (30) into (20) and (22), the temperature distributions θ(z) and
θm(zm) are obtained using the temperature boundary conditions is as fol-
lows

θ(z) = A1[c5 cosh az + c6 sinh az + g2(z)] (31)
θm(zm) = A1[c7 cosh amzm + c8 sinh amzm + g2m(zm)] (32)

where
g2(z) = A1[∆17 −∆18 + ∆19 −∆20], g2m(zm) = A1[∆21 −∆22]

∆17 =
(2E3z + E4z

2)

4a
(a1 cosh az + sinh az)

∆18 =
E4z

4a2
(cosh az + a1 sinh az)

∆19 =
(6a2z2E3 + 4a2z3E4 + 6E4z)

24a3
(a3 cosh az + a2 sinh az)

∆20 =
(E3z + E4z

2)

4a2
(a2 cosh az + a3 sinh az)

∆21 =
(2E3mzm + E4mz

2
m)

4am
(a5 cosh amzm + a4 sinh amzm)

∆22 =
E4mzm

4a2m
(a4 cosh amzm + a5 sinh amzm)

E3 = R∗I , E4 = −2(R∗I + 1), E3m = −R∗Im, E4m = −2(R∗Im + 1)

c5 = c7T̂ , c6 = 1
a
(c8am + δ12 − δ11),

c7 =
δ15
δ16

, c8 =
δ17
δ18

δ10 = −A1[∆23 + ∆24 + ∆25 + ∆26]

∆23 =
(2a2E3 + E4(a

2 − 1))

4a2
(cosh a+ a1 sinh a)

∆24 =
E4 + 2E3

4a
(a1 cosh a+ sinh a)

∆25 =
(3a2 − 3)E3 + (2a2 − 3)E4

12a2
(a2 cosh a+ a3 sinh a)

∆26 =
(a2E3 + E4(a

2 + 1))

4a3
(a3 cosh a+ a2 sinh a)

δ11 = A1[
(2a2a1 − aa2)E3 + (a3 − a)E4

4a3
]

7

GEDRAG & ORGANISATIE REVIEW - ISSN:0921-5077

VOLUME 33 : ISSUE 02 - 2020

http://lemma-tijdschriften.nl/

Page No:752



δ12 = A1[
2E3ma5

4am
− a4E4m

4a2m
]

δ13 = −A1[∆27 + ∆28]

∆27 = [
E4m − 2E3m

4am
](a5 cosh am − a4 sinh am)

∆28 = [
E4m

4a2m
](a4 cosh am − a5 sinh am)

δ14 = δ10 − (δ12 − δ11) cosh a, δ15 = δ13am cosh a+ δ14 sinh am
δ16 = am cosh am cosh a+ aT̂ sinh a sinh am
δ17 = δ13aT̂ sinh a− δ14 cosh am
δ18 = −a sinh amT̂ sinh a− am cosh a cosh am
From the boundary condition (23)1, the thermal Marangoni number for par-
abolic temperature profile is as follows

M2 =
−Λ1

a2(c5 cosh a+ c6 sinh a+ Λ4 + Λ5)
(33)

where

Λ4 = (
(E4 + 2E3)

4a
)(a1 cosh a+ sinh a)− E4

4a2
(cosh a+ a1 sinh a)

Λ5 = ∆29 −∆30

∆29 =
(4a2E4 + 6a2E3 + 6E4)

24a3
(a3 cosh a+ a2 sinh a)

∆30 =
(E4 + E3)

4a2
(a3 sinh a+ a2 cosh a)

4.3. Inverted Parabolic temperature profile.

Consider this profile

h(z) = 2(1− z) and hm(zm) = 2(1− zm) (34)

Substituting (34) into (20) and (22), the temperature distributions θ(z) and
θm(zm) are obtained using the temperature boundary conditions, as follows

θ(z) = A1[c9 cosh az + c10 sinh az + g3(z)] (35)
θm(zm) = A1[c11 cosh amzm + c12 sinh amzm + g3m(zm)] (36)

where
g3(z) = A1[∆31 −∆32 + ∆33 −∆34], g3m(zm) = A1[∆35 −∆36]

∆31 =
(2E5z + E6z

2)

4a
(a1 cosh az + sinh az)

∆32 =
E6z

4a2
(cosh az + a1 sinh az)

∆33 =
(6a2z2E5 + 4a2z3E6 + 6E6z)

24a3
(a3 cosh az + a2 sinh az)

∆34 =
(E5z + E6z

2)

4a2
(a2 cosh az + a3 sinh az)

∆35 =
(2E5mzm + E6mz

2
m)

4am
(a5 cosh amzm + a4 sinh amzm)
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∆36 =
E6mzm

4a2m
(a4 cosh amzm + a5 sinh amzm)

E5 = R∗I − 2, E6 = 2(1−R∗I), E5m = −2−R∗Im, E6m = 2(1−R∗Im)

c9 = c11T̂ , c10 = 1
a
(c12am + δ22 − δ21),

c11 =
δ24
δ25

, c12 =
δ26
δ27

δ19 = −A1[∆37 + ∆38 + ∆39 + ∆40]

∆37 =
(2a2E5 + E6(a

2 − 1))

4a2
(cosh a+ a1 sinh a)

∆38 =
E6 + 2E5

4a
(a1 cosh a+ sinh a)

∆39 =
(3a2 − 3)E5 + (2a2 − 3)E6

12a2
(a2 cosh a+ a3 sinh a)

∆40 =
(a2E5 + E6(a

2 + 1))

4a3
(a3 cosh a+ a2 sinh a)

δ20 = −A1[∆41 + ∆42]

∆41 = [
E6m − 2E5m

4am
](a5 cosh am − a4 sinh am)

∆42 = [
E6m

4a2m
](a4 cosh am − a5 sinh am)

δ21 = A1[
(2a2a1 − aa2)E5 + (a3 − a)E6

4a3
]

δ22 = A1[
2E5ma5

4am
− a4E6m

4a2m
]

δ23 = δ19 − (δ22 − δ21) cosh a, δ24 = δ22am cosh a+ δ23 sinh am
δ25 = am cosh am cosh a+ aT̂ sinh a sinh am
δ26 = δ22aT̂ sinh a− δ23 cosh am
δ27 = −a sinh amT̂ sinh a− am cosh a cosh am
From the boundary condition (23)1, the thermal Marangoni number for in-
verted parabolic temperature profile is as follows

M3 = − Λ1

a2(c9 cosh a+ c10 sinh a+ Λ6 + Λ7)
(37)

where

Λ6 = (
(E6 + 2E5)

4a
)(a1 cosh a+ sinh a)− E6

4a2
(cosh a+ a1 sinh a)

Λ7 = ∆43 −∆44

∆43 =
(4a2E6 + 6a2E5 + 6E6)

24a3
(a3 cosh a+ a2 sinh a)

∆44 =
(E6 + E5)

4a2
(a3 sinh a+ a2 cosh a).
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5. RESULTS AND DISCUSSION

The stability analysis of Bènard-Marangoni convection in a composite
layer with fluid saturated porous layer beneath the fluid layer in the pres-
ence of heat source (sink) with non-uniform temperature gradients is stud-
ied theoretically. The Eigen value problem thus obtained has an exact so-
lution. Thermal Marangoni number M is the Eigen value of the system.
The strength of the heat source (sink) considered, represented by internal
Rayleigh number RI is small so that the convection is not induced by itself.
The variation of these on the thermal Marangoni number are represented
graphically in the following figures for all the three temperature profiles for
fixed values of a = RI = RIm = T̂ = 1 and β = 0.1.

(a) (b) (c)

FIGURE 1. Effects of porous parameter β

The effect of porous parameter β, on thermal Marangoni number is recor-
ded in the figures 1a, 1b and 1c for the three different temperature profiles.
From the figures it can be noted that the effect of β, for a given depth ratio
d̂, is to increase M irrespective of the temperature profiles. It can be clearly
observed that M1(d̂) < M2(d̂) < M3(d̂) there by indicating that the in-
crease in depth ratio is to stabilize the system. Also one can conclude, from
figure 1c that the increase in depth ratio beyond one (indicating that the
porous layer dominant composite layer) increases M more rapidly. The di-
verging nature of the curves indicate that the effect is drastic for larger depth
ratio. This implies that the inverted parabolic temperature profile brings in
greater stability for porous layer dominant composite layers.
Figures 2a, 2b, 2c are the plots ofM versus d̂ for different internal Rayleigh
number RI , in the fluid region. From Fig. 2a it is observed that the ef-
fect of RI is to destabilize the system and the effect of increasing d̂ (0 to
1) is to stabilize the system in the case of linear temperature profile. The
reverse is observed for increasing d̂ in the case of parabolic temperature
profile, up to a certain value and then M increases for the porous layer
dominant composite layer. The results for RI are qualitatively similar for
all the temperature profiles. It can also be seen from these figures that the
effect of RI for inverted parabolic temperature profile is not much as com-
pared to the other two profiles. From these figures one can also conclude

10
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(a) (b) (c)

FIGURE 2. Effects of fluid internal Rayleigh number RI

that M1(d̂) < M2(d̂) < M3(d̂) . The converging nature of the curves imply
that the effect is more in the fluid layer dominant composite layer.

(a) (b) (c)

FIGURE 3. Effects of porous internal Rayleigh number RIm

Effect ofRIm , internal Rayleigh number in the porous layer onM for three
different temperature profiles are depicted in figures 3a, 3b, 3c. The values
of RIm are chosen as −1, 0 and 1 which represent the presence of sink, no
source (sink) and a source. It is observed that for all the temperature pro-
files, the effect of RIm is to stabilize the system as the values increase from
-1 to 1. It can also be seen that the effect of RIm is clearly visible for a
larger d̂ . This implies that the dominance of porous layer causes stabil-
ity. Marangoni number is quite large for the inverted parabolic temperature
profile as compared to the other two temperature profiles. These results are
qualitatively opposite to the results for RI (Figs. 2a, 2b, 2c).
Figures 4a, 4b and 4c are the plots of M versus d̂ for different thermal ratio
T̂ , which includes the effect of boundary temperatures along with the inter-
facial temperature, for all the three temperature profiles. As expected the
effect of T̂ is to increaseM . The diverging nature of the curves indicate that
the effect of T̂ is more pronouncing in the porous layer dominant composite
layer.
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(a) (b) (c)

FIGURE 4. Effects of thermal ratio T̂

6. CONCLUSION

Following conclusions are drawn from this study
(i) M1(d̂) < M2(d̂) < M3(d̂)

(ii) Depth ratio, internal Rayleigh number, porous parameter and thermal
ratio can be effectively used to control the convection.

(iii) Inverted parabolic temperature profile is the most stable among all the
three different temperature profiles considered.
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